ACS Appl Mater Interfaces
August 2024
In the presence of appropriate substrates, surface-anchored enzymes can act as pumps and propel fluid through microchambers. Understanding the dynamic interplay between catalytic reactions and fluid flow is vital to enhancing the accuracy and utility of flow technology. Through a combination of experimental observations and numerical modeling, we show that coupled enzyme pumps can exhibit flow enhancement, flow suppression, and changes in the directionality (reversal) of the fluid motion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
The achievement of consistent and static chemical gradients is critically important in the study of diffusion and chemotaxis at the micro- and nanoscales. In this context, a number of groups have reported on hydrogel-based systems for generating concentration gradients. Here, we analyze the behavior of agarose and gelatin-based hydrogels in hybridization chambers of different heights.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
The dynamic interplay between the composition of lipid membranes and the behavior of membrane-bound enzymes is critical to the understanding of cellular function and viability, and the design of membrane-based biosensing platforms. While there is a significant body of knowledge about how lipid composition and dynamics affect membrane-bound enzymes, little is known about how enzyme catalysis influences the motility and lateral transport on lipid membranes. Using enzyme-attached lipids in supported bilayers (SLBs), we provide direct evidence of catalysis-induced fluid flow that underlies the observed motility on SLBs.
View Article and Find Full Text PDFNanoscale enzymes anchored to surfaces act as chemical pumps by converting chemical energy released from enzymatic reactions into spontaneous fluid flow that propels entrained nano- and microparticles. Enzymatic pumps are biocompatible, highly selective, and display unique substrate specificity. Utilizing these pumps to trigger self-propelled motion on the macroscale has, however, constituted a significant challenge and thus prevented their adaptation in macroscopic fluidic devices and soft robotics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2024
The interplay of interfacial tensions on droplets results in a range of self-powered motions that mimic those of living systems and serve as a tunable model to understand their complex non-equilibrium behavior. Spontaneous shape deformations and oscillations are crucial features observed in nature but difficult to incorporate in synthetic artificial systems. Here, we report sessile oil-in-water emulsions that exhibit rapid oscillating behavior.
View Article and Find Full Text PDF