Posttranslational modifications of histones (PTMs) are associated with specific chromatin and gene expression states. Although studies in Drosophila melanogaster have revealed phenotypic associations between chromatin-modifying enzymes and their histone substrates, comparable studies in mammalian models do not exist. Here, we use CRISPR base editing in mouse embryonic stem cells (mESCs) to address the regulatory role of lysine 27 of histone H3 (H3K27), a substrate for Polycomb repressive complex 2 (PRC2)-mediated methylation and CBP/EP300-mediated acetylation.
View Article and Find Full Text PDFPolycomb group proteins are important for maintaining gene expression patterns and cell identity in metazoans. The mammalian Polycomb repressive deubiquitinase (PR-DUB) complexes catalyze removal of monoubiquitination on lysine 119 of histone H2A (H2AK119ub1) through a multiprotein core comprised of BAP1, HCFC1, FOXK1/2, and OGT in combination with either of ASXL1, 2, or 3. Mutations in PR-DUB components are frequent in cancer.
View Article and Find Full Text PDFThe importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3).
View Article and Find Full Text PDFHealthc Technol Lett
December 2019
Untreated dental decay is the most prevalent dental problem in the world, affecting up to 2.4 billion people and leading to a significant economic and social burden. Early detection can greatly mitigate irreversible effects of dental decay, avoiding the need for expensive restorative treatment that forever disrupts the enamel protective layer of teeth.
View Article and Find Full Text PDFAims: Posttranslational modifications of histones and transcription factors regulate gene expression and are implicated in beta-cell failure and diabetes. We have recently shown that preserving H3K27 and H3K4 methylation using the lysine demethylase inhibitor GSK-J4 reduces cytokine-induced destruction of beta-cells and improves beta-cell function. Here, we investigate the therapeutic potential of GSK-J4 to prevent diabetes development and examine the importance of H3K4 methylation for islet function.
View Article and Find Full Text PDFRegulation of chromatin composition through post-translational modifications of histones contributes to transcriptional regulation and is essential for many cellular processes, including differentiation and development. KDM4A (JMJD2A) is a lysine demethylase with specificity towards di- and tri-methylated lysine 9 and lysine 36 of histone H3 (H3K9me2/me3 and H3K36me2/me3). Here, we report that as a maternal factor plays a key role in embryo survival and is vital for female fertility.
View Article and Find Full Text PDFZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts.
View Article and Find Full Text PDFAlterations in chromatin structure caused by deregulated epigenetic mechanisms collaborate with underlying genetic lesions to promote cancer. SMARCA4/BRG1, a core component of the SWI/SNF ATP-dependent chromatin-remodelling complex, has been implicated by its mutational spectrum as exerting a tumour-suppressor function in many solid tumours; recently however, it has been reported to sustain leukaemogenic transformation in MLL-rearranged leukaemia in mice. Here we further explore the role of SMARCA4 and the two SWI/SNF subunits SMARCD2/BAF60B and DPF2/BAF45D in leukaemia.
View Article and Find Full Text PDFPiwi proteins and Piwi-interacting RNAs (piRNAs) have conserved functions in transposon silencing. The murine Piwi proteins Mili and Miwi2 (also called Piwil2 and Piwil4, respectively) direct epigenetic LINE1 and intracisternal A particle transposon silencing during genome reprogramming in the embryonic male germ line. Piwi proteins are proposed to be piRNA-guided endonucleases that initiate secondary piRNA biogenesis; however, the actual contribution of their endonuclease activities to piRNA biogenesis and transposon silencing remain unknown.
View Article and Find Full Text PDF