The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold.
View Article and Find Full Text PDFA gram-scale synthesis of iboxamycin, an antibiotic candidate bearing a fused bicyclic amino acid residue, is presented. A pivotal transformation in the route involves an intramolecular hydrosilylation-oxidation sequence to set the ring-fusion stereocenters of the bicyclic scaffold. Other notable features of the synthesis include a high-yielding, highly diastereoselective alkylation of a pseudoephenamine amide, a convergent sp-sp Negishi coupling, and a one-pot transacetalization-reduction reaction to form the target compound's oxepane ring.
View Article and Find Full Text PDFBuilding-up and breaking-down of carbohydrates are processes common to all forms of life. Glycoside hydrolases are a broad class of enzymes that play a central role in the cleavage of glycosidic bonds, which is fundamental to carbohydrate degradation. The large majority of substrates are five- and six-membered ring glycosides.
View Article and Find Full Text PDF