Objective: A soft-prior regularization (SR) electrical impedance tomography (EIT) technique for breast cancer imaging is described, which shows an ability to accurately reconstruct tumor/inclusion conductivity values within a dense breast model investigated using a cylindrical and a breast-shaped tank.
Approach: The SR-EIT method relies on knowing the spatial location of a suspicious lesion initially detected from a second imaging modality. Standard approaches (using Laplace smoothing and total variation regularization) without prior structural information are unable to accurately reconstruct or detect the tumors.
Objective: Currently no efficient and reliable technique exists to routinely assess surgical margins during a radical prostatectomy. Electrical impedance spectroscopy (EIS) has been reported as a potential technique to provide surgeons with real-time intraoperative margin assessment. In addition to providing a quantified measure of margin status, a co-registered electrical impedance tomography (EIT) image presented on a surgeon's workstation could add value to the margin assessment process.
View Article and Find Full Text PDFIEEE Trans Med Imaging
April 2017
A rotational Electrical Impedance Tomography (rEIT) methodology is described and shown to produce spatially accurate absolute reconstructions with improved image contrast and an improved ability to distinguish closely spaced inclusions compared to traditional EIT on data recorded from cylindrical and breast-shaped tanks. Rotations of the tank without altering the interior conductivity distribution are used to produce the rEIT data. Quantitatively, rEIT was able to distinguish two inclusions that were 1.
View Article and Find Full Text PDFProstate cancer (PCa) recurrences are often predicted by assessing the status of surgical margins (SM)- positive surgical margins (PSM) increase the chances of biochemical recurrence by 2-4 times which may lead to PCa recurrence. To this end, an electrical impedance acquisition system with a microendoscopic probe was employed in an ex-vivo study of human prostates. This system measures the tissue bioimpedance over a range of frequencies (1 kHz to 1MHz), and computes a number of Composite Impedance Metrics (CIM).
View Article and Find Full Text PDFIEEE Trans Med Imaging
July 2016
A novel regularization technique is developed for end-fired microendoscopic electrical impedance tomography using the dual-mesh method. The new regularization technique coupled with appropriate forward modeling and inverse mesh design is shown to produce dramatically improved reconstructions over previous methods. 3D absolute and difference reconstructions from measured saline tank and ex vivo adipose and muscle tissue experiments are used to validate the approach.
View Article and Find Full Text PDFRadially configured microendoscopic electrical impedance probes intended for intraoperative surgical margin assessment during robot-assisted laparoscopic prostatectomy (RALP) were examined through simulation, bench-top experimentation, and ex vivo tissue studies. Three probe designs with 8, 9, and 17 electrodes, respectively, were analyzed through finite element method based simulations. One mm diameter spherical inclusions ( σinclusion = 1 S/m) are positioned at various locations within a hemispherical background ( σbackground = 0.
View Article and Find Full Text PDF