Publications by authors named "Aditi M Jhaveri"

Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment.

View Article and Find Full Text PDF

In this study, transferrin (Tf)-modified poly(ethylene glycol)-phosphatidylethanolamine (mPEG-PE) micelles loaded with the poorly water-soluble drug, R547 (a potent and selective ATP-competitive cyclin-dependent kinase (CDK) inhibitor), were prepared and evaluated for their targeting efficiency and cytotoxicity in vitro and in vivo to A2780 ovarian carcinoma cells, which overexpress transferrin receptors (TfR). At 10 mM lipid concentration, both Tf-modified and plain micelles solubilized 800 μg of R547. Tf-modified micelles showed enhanced interaction with A2780 ovarian carcinoma cells in vitro.

View Article and Find Full Text PDF

We prepared and evaluated transferrin (Tf) and monoclonal antibody (mAb) 2C5-modified dual ligand-targeted poly(ethylene glycol)-phosphatidylethanolamine micelles loaded with a poorly soluble drug, R547 (a selective adenosine triphosphate-competitive cyclin-dependent kinase inhibitor) for enhancement of targeting efficiency and cytotoxicity in vitro and in vivo to A2780 ovarian carcinoma compared to single ligand-targeted micelles. Micellar solubilization significantly improved the solubility of R547 from 1 to 800 μg/mL. The size of modified and non-modified micelles was 13-16 nm.

View Article and Find Full Text PDF

Personalized medicine, which ultimately seeks to afford tailored therapeutic regimens for individual patients, is quickly emerging as a new paradigm in the diagnosis and treatment of diseases. The idea of casting aside generic treatments in favor of patient-centric therapies has become feasible owing to advances in nanotechnology and drug delivery coupled with an enhanced knowledge of genomics and an understanding of disease at the molecular level. This review highlights polymeric immunomicelles as a class of nanocarriers that have the potential to combine diagnosis, targeted drug therapy, as well as imaging and monitoring of therapeutic response, to render a personalized approach to the management of disease.

View Article and Find Full Text PDF