Publications by authors named "Aditi Kanhere"

Background: Src family kinases (SFKs) contribute to migraine pathogenesis, yet its role in regulating photophobia behaviour, one of the most common forms of migraine, remains unknown. Here, we addressed whether SFKs antagonism alleviates photophobia behavior and explored the underlying mechanism involving hypothalamus and trigeminal ganglion activity, as measured by the alteration of neuropeptide levels and transcriptome respectively.

Methods: A rapid-onset and injury-free mouse model of photophobia was developed following intranasal injection of the TRPA1 activator, umbellulone.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes.

View Article and Find Full Text PDF

Site-directed mutagenesis (SDM) is a technique in molecular biology and protein engineering that is widely used to determine the significance of specific residues involved in post-translational modifications (PTMs), protein structure, function, and stability. Here, we describe a simple and cost-effective polymerase chain reaction (PCR)-based SDM method. This method can be used to introduce point mutation, short addition, or deletions in protein sequences.

View Article and Find Full Text PDF

DNA methyl transferase-1 or DNMT1 maintains DNA methylation in the genome and is important for regulating gene expression in cells. Aberrant changes in DNMT1 activity and DNA methylation are commonly observed in cancers and many other diseases. Recently, a number of long intergenic non-protein-coding RNAs or lincRNAs have been shown to play a role in regulating DNMT1 activity.

View Article and Find Full Text PDF

Long noncoding RNAs or lncRNAs are a class of non-protein-coding RNAs that are >200 nt in length. Almost 50% of lncRNAs during zebrafish development are transcribed in an antisense direction to a protein-coding gene. However, the role of these natural antisense transcripts (NATs) during development remains enigmatic.

View Article and Find Full Text PDF

Despite studies indicating that long noncoding RNAs, or lncRNAs, can act as proto-oncogenes, the implications of large numbers of cancer-associated variants found within noncoding RNA loci remain largely unknown. Here, we draw upon emerging studies to speculate on how variants of lncRNAs might play a role in cancer development.

View Article and Find Full Text PDF

The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) are an invaluable tool in the fields of embryology and regenerative medicine. Activin A and BMP4 are well-characterised growth factors implicated in pluripotency and differentiation. In the current study, hESCs are cultured in a modified version of mTeSR1, where low concentrations of ActivinA substitute for TGFβ.

View Article and Find Full Text PDF

Objective: JARID2 is a member of chromatin-modifying Polycomb Repressive Complex-2 or PRC2. It plays a role in recruiting PRC2 to developmental genes and regulating its activity. JARID2 along with PRC2 is indispensable for normal development.

View Article and Find Full Text PDF
Article Synopsis
  • Long noncoding RNAs (lncRNAs) make up most of transcripts in mammalian genomes, but their functions are still not well understood.
  • The FANTOM6 project systematically knocked down 285 lncRNAs in human dermal fibroblasts and analyzed changes in cell growth, shape, and gene expression using CAGE techniques.
  • This study provides a comprehensive lncRNA knockdown data set (over 1000 CAGE sequencing libraries) and reveals important findings about their roles and impact on various cellular pathways.
View Article and Find Full Text PDF

Polycomb repressive complex-2 (PRC2) is a group of proteins that play an important role during development and in cell differentiation. PRC2 is a histone-modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID2 is a co-factor of PRC2 and is important for targeting PRC2 to chromatin.

View Article and Find Full Text PDF

A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane protein that functions as a "molecular scissor" to cleave the extracellular regions from its transmembrane target proteins. ADAM10 is well characterized as the ligand-dependent activator of Notch proteins, which control cell fate decisions. Indeed, conditional knockouts of ADAM10 in mice reveal impaired B-, T-, and myeloid cell development and/or function.

View Article and Find Full Text PDF

Enhanced coverage and sensitivity of next-generation 'omic' platforms has allowed the characterization of gene, metabolite and protein responses in highly metabolic tissues, such as, skeletal muscle. A limitation, however, is the capability to determine interaction between dynamic biological networks. To address this limitation, we applied Weighted Analyte Correlation Network Analysis (WACNA) to RNA-seq and metabolomic datasets to identify correlated subnetworks of transcripts and metabolites in response to a high-fat diet (HFD)-induced obesity and/or exercise.

View Article and Find Full Text PDF

Although it is currently understood that the exon junction complex (EJC) is recruited on spliced mRNA by a specific interaction between its central protein, eIF4AIII, and splicing factor CWC22, we found that eIF4AIII and the other EJC core proteins Y14 and MAGO bind the nascent transcripts of not only intron-containing but also intronless genes on polytene chromosomes. Additionally, Y14 ChIP-seq demonstrates that association with transcribed genes is also splicing-independent in S2 cells. The association of the EJC proteins with nascent transcripts does not require CWC22 and that of Y14 and MAGO is independent of eIF4AIII.

View Article and Find Full Text PDF

Recent advances in next-generation sequencing have revealed that majority of the human genome is transcribed into long and short RNA (ncRNA) transcripts. Many ncRNAs function by interacting with proteins and forming regulatory complexes. RNA-protein interactions are vital in controlling core cellular processes like transcription and translation.

View Article and Find Full Text PDF

This work presents the use of a tunable-focus thermo-responsive hydrogel based liquid lens in combination with an objective lens to achieve remote axial focusing in a conventional microscopy. The goal of this design is to eliminate image distortion due to sample vibrations caused by mechanical stage scanning. This approach reduces the mechanical complexity and power consumption due to the use of electrically tunable lenses while achieving a two-fold increase in the axial scanning range.

View Article and Find Full Text PDF

Field of view and accommodative focus are two fundamental attributes of many imaging systems, ranging from human eyes to microscopes. Here, we present arrays of Fresnel zone plates fabricated on a flexible substrate, which allows for the adjustment of both the field of view and optical focus. Such zone plates function as compact and lightweight microlenses and are fabricated using silicon nanowires.

View Article and Find Full Text PDF

The complex relationship between Th1 and Th17 cells is incompletely understood. The transcription factor T-bet is best known as the master regulator of Th1 lineage commitment. However, attention is now focused on the repression of alternate T cell subsets mediated by T-bet, particularly the Th17 lineage.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers.

View Article and Find Full Text PDF

T-bet and GATA3 regulate the CD4+ T cell Th1/Th2 cell fate decision but little is known about the interplay between these factors outside of the murine Ifng and Il4/Il5/Il13 loci. Here we show that T-bet and GATA3 bind to multiple distal sites at immune regulatory genes in human effector T cells. These sites display markers of functional elements, act as enhancers in reporter assays and are associated with a requirement for T-bet and GATA3.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) genome sustains substantial epigenetic modification involving chromatin remodelling and DNA methylation during lytic replication. Zta (ZEBRA, BZLF1), a key regulator of the EBV lytic cycle, is a transcription and replication factor, binding to Zta response elements (ZREs) in target promoters and EBV lytic origins of replication. In vitro, Zta binding is modulated by DNA methylation; a subset of CpG-containing Zta binding sites (CpG ZREs) is bound only in a DNA methylation-dependent manner.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes a persistent latent infection in B lymphocytes and is associated with the development of numerous human tumors. Epstein-Barr nuclear antigen 3C (EBNA 3C) is essential for B-cell immortalization, has potent cell cycle deregulation capabilities, and functions as a regulator of both viral- and cellular-gene expression. We performed transcription profiling on EBNA 3C-expressing B cells and identified several chemokines and members of integrin receptor-signaling pathways, including CCL3, CCL4, CXCL10, CXCL11, ITGA4, ITGB1, ADAM28, and ADAMDEC1, as cellular target genes that could be repressed by the action of EBNA 3C alone.

View Article and Find Full Text PDF

An important challenge in biology has been to understand how cell-type-specific expression programs are orchestrated through regulated access to chromatin. Knowledge of the interaction between noncoding RNAs (ncRNAs) and chromatin regulators has the potential to help answer such questions, but how ncRNAs target chromatin regulators to specific sites in the genome is not well understood. Recently, Jeon and Lee proposed that DNA-binding proteins act as a bridge between ncRNAs and their target sites in chromatin.

View Article and Find Full Text PDF

Blockade of IL-2R with humanized anti-CD25 Abs, such as daclizumab, inhibits Th2 responses in human T cells. Recent murine studies have shown that IL-2 also plays a significant role in regulating Th2 cell differentiation by activated STAT5. To explore the role of activated STAT5 in the Th2 differentiation of primary human T cells, we studied the mechanisms underlying IL-2 regulation of C-MAF expression.

View Article and Find Full Text PDF

Polycomb proteins maintain cell identity by repressing the expression of developmental regulators specific for other cell types. Polycomb repressive complex-2 (PRC2) catalyzes trimethylation of histone H3 lysine-27 (H3K27me3). Although repressed, PRC2 targets are generally associated with the transcriptional initiation marker H3K4me3, but the significance of this remains unclear.

View Article and Find Full Text PDF