Publications by authors named "Adithya Kamalakshan"

Oligomers and amyloid fibrils formed at different stages of protein aggregation are important biomarkers for a variety of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The development of probes for the sensitive detection of oligomeric species is important for early stage diagnosis of amyloidogenic diseases. Many small molecular dyes have been developed to probe the dynamic growth of amyloid fibrils.

View Article and Find Full Text PDF

To date, metal oxide catalysts have not been explored as cathode materials for robust and high-performance single-compartment HO fuel cells due to significant non-electrochemical disproportionation losses of HO on many metal oxide surfaces. Here, for the first time, we demonstrate an acidic peroxide fuel cell with antimony doped tin oxide as the cathode and widely used Ni foam as the anode material. Our constructed peroxide fuel cell records a superior open circuit potential of nearly 0.

View Article and Find Full Text PDF

Here, we demonstrate a label-free dual optical response strategy for the detection of cytochrome c (Cyt c) with ultrahigh sensitivity using highly luminescent lanthanides containing inorganic-organic hybrid nanotubular sensor arrays. These sensor arrays are formed by the sequential incorporation of the photosensitizers 2,3-dihydroxynaphthalene (DHN) or 1,10-phenanthroline (Phen), and trivalent lanthanide terbium ions (Tb) into sodium lithocholate (NaLC) nanotube templates. Our sensing platform relies on the detection and quantification of Cyt c in solution by providing dual photoluminescence quenching responses from the nanotubular hybrid arrays in the presence of Cyt c.

View Article and Find Full Text PDF

Amyloid aggregation of protein is linked to many neurodegenerative diseases. Identification of small molecules capable of targeting amyloidogenic proteins has gained significant importance. Introduction of hydrophobic and hydrogen bonding interactions through site-specific binding of small molecular ligand to protein can effectively modulate the protein aggregation pathway.

View Article and Find Full Text PDF

The formation of nanobiohybrids through the immobilization of enzymes on functional nanomaterials has opened up exciting research opportunities at the nanobiointerfaces. These systems hold great promise for a wide range of applications in biosensing, biocatalytic, and biomedical fields. Here, we report the formation of a hybrid nanobiocatalytic system through the adsorption of cytochrome (Cyt ) on pluronic triblock copolymer, P123 (PEO--PPO--PEO), stabilized MoS nanosheets.

View Article and Find Full Text PDF

Strongly coupled dye aggregates with tailored exciton properties may find their use in developing artificial light-harvesting and optoelectronic devices. Here, we report the control of tubular pseudoisocyanine (PIC) dye J- and H-aggregate formation with tunable exciton fluorescence using lithocholic acid (LCA) as a template. The LCA-templated PIC J-aggregate nanotubes formed at a higher LCA/PIC molar ratio (≥5:1) exhibit a sharp, red-shifted absorption band (at 555 nm), intense fluorescence (at 565 nm), and shorter lifetime (200 ps), all indicating their strong superradiance properties.

View Article and Find Full Text PDF