Publications by authors named "Adilya Dagkesamanskaya"

The study of microorganism interactions is important for understanding the organization and functioning of microbial consortia. Additionally, the interaction between yeast and bacteria is of interest in the field of health and nutrition area for the development of probiotics. To investigate these microbial interactions at the cellular and molecular levels, a simple, reliable, and quantitative method is proposed.

View Article and Find Full Text PDF

As the use of antioxidant compounds in the domains of health, nutrition and well-being is exponentially rising, there is an urgent need to quantify antioxidant power quickly and easily, ideally within living cells. We developed an Anti Oxidant Power in Yeast (AOPY) assay which allows for the quantitative measurement of the Reactive Oxygen Species (ROS) and free-radical scavenging effects of various molecules in a high-throughput compatible format. Key parameters for were investigated, and the optimal values were determined for each of them.

View Article and Find Full Text PDF

Adjustment of plasmid copy number resulting from the balance between positive and negative impacts of borne synthetic genes, plays a critical role in the global efficiency of multistep metabolic engineering. Differential expression of co-expressed engineered genes is frequently observed depending on growth phases, metabolic status and triggered adjustments of plasmid copy numbers, constituting a dynamic process contributing to minimize global engineering burden. A yeast model involving plasmid based expression of phosphoribulokinase (PRKp), a key enzyme for the reconstruction of synthetic Calvin cycle, was designed to gain further insights into such a mechanism.

View Article and Find Full Text PDF

Application of droplet-based microfluidics for the screening of microbial libraries is one of the important ongoing developments in functional genomics/metagenomics. In this article, we propose a new method that can be employed for high-throughput profiling of cell growth. It consists of light-driven labelling droplets that contain growing cells directly in a microfluidics observation chamber, followed by recovery of the labelled cells.

View Article and Find Full Text PDF