Malignant astrocytomas are aggressive primary brain tumors characterized by extensive hypoxia-induced, mitochondria-dependent changes such as altered respiration, increased chymotrypsin-like (CT-L) proteasome activity, decreased apoptosis, drug resistance, stemness, and increased invasiveness. Mitochondrial Lon Peptidase 1 (LonP1) overexpression and increased CT-L proteasome activity are biomarkers of an aggressive high-grade phenotype and found to be associated with recurrence and poor patient survival. In preclinical models, small molecule agents targeting either LonP1 or the proteasome CT-L activity have anti-astrocytoma activity.
View Article and Find Full Text PDFIn continuation of our previous efforts for the development of potent small molecules against brain cancer, herein we synthesized seventeen new compounds and tested their anti-gliomapotential against established glioblastoma cell lines, namely, D54MG, U251, and LN-229 as well as patient derived cell lines (DB70 and DB93). Among them, the carboxamide derivatives, BT-851 and BT-892 were found to be the most active leads in comparison to our established hit compound BT#9.The SAR studies of our hit BT#9 compound resulted in the development of two new lead compounds by hit to lead strategy.
View Article and Find Full Text PDFThe authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
View Article and Find Full Text PDFThe incorporation of the "magic" boron atom has been established as an important new strategy in the field of medicinal chemistry as boron compounds have been shown to form various bonds with their biological targets. Currently, a number of boron-based drugs (e.g.
View Article and Find Full Text PDF