Highly sensitive mode-multiplex miniaturized sensors enable the detection and quantification of multiple biomolecules simultaneously through their real-time interactions. Here, we demonstrate a grapefruit photonic crystal fiber (PCF)-based mode-multiplex surface plasmon resonance (SPR) sensor that detects multiple analytes simultaneously. Three grapefruit-shaped air-holes are internally coated with plasmonic gold (Au) material, which allows them to act as mode-multiplex channels that detect three unknown analytes.
View Article and Find Full Text PDFThe study and applications of in vivo skin optics have been openly documented as early as the year 1954, or possibly earlier. To date, challenges in analyzing the complexities of this field remain, with wide scopes requiring more scrutiny. Recent advances in spectroscopic research and multivariate analytics allow a closer look into applications potentially for detecting or monitoring diseases.
View Article and Find Full Text PDFA simple multi-core flat fiber (MCFF) based surface plasmon resonance (SPR) sensor operating in telecommunication wavelengths is proposed for refractive index sensing. Chemically stable gold (Au) and titanium dioxide (TiO(2)) layers are used outside the fiber structure to realize a simple detection mechanism. The modeled sensor shows average wavelength interrogation sensitivity of 9,600 nm/RIU (Refractive Index Unit) and maximum sensitivity of 23,000 nm/RIU in the sensing range of 1.
View Article and Find Full Text PDFLong-range surface plasmon Y-junctions are demonstrated as sensors for the detection of bulk refractive index changes in solution and for protein binding. Using a fully-cladded Au stripe waveguide as a reference channel, common drift and noise in the system can be eliminated, relaxing the need for precise optical alignments. The performance of the structure is discussed theoretically, then bulk sensing is carried out experimentally with five solutions of different refractive indices, and protein sensing is demonstrated through physisorption of bovine serum albumin on a carboxyl-terminated Au stripe.
View Article and Find Full Text PDFWith interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.
View Article and Find Full Text PDFIn regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF).
View Article and Find Full Text PDFWe propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs).
View Article and Find Full Text PDFEvaluation of binding between analytes and its relevant ligands on surface plasmon resonance (SPR) biosensor is of considerable importance for accurate determination and screening of an interference in immunosensors. Dengue virus serotype 2 was used as a case study in this investigation. This research work compares and interprets the results obtained from analytical analysis with the experimental ones.
View Article and Find Full Text PDFA method for improving the thermoluminescence (TL) yield of silica-based optical fibres is demonstrated. Using silica obtained from a single manufacturer, three forms of pure (undoped) fibre (capillary-, flat-, and photonic crystal fibre (PCF)) and two forms of Ge-doped fibre (capillary- and flat-fibre) were fabricated. The pure fibre samples were exposed to 6 and 21MeV electrons, the doped fibres to 6MV photons.
View Article and Find Full Text PDFWe propose a photonic crystal slab-based 1 × 3 power splitter with high output transmission and equal power distribution. It is designed by cascading an asymmetric 1 × 2 power splitter and a symmetric 1 × 2 power splitter. Desired equal power splitting is achieved by introducing and optimizing the splitting region of the 1 × 2 power splitters with flexible structural defects.
View Article and Find Full Text PDFWe experimentally demonstrate optical delay in the second-order Brillouin gain spectrum by incorporating a double Brillouin-frequency shifter into the system. By coinciding the seed signal with the second-order Brillouin gain spectrum, it was found that the seed signal experienced significantly larger delay as compared to the Brillouin slow light generated from the first-order Brillouin spectrum. At a Brillouin gain of 17 dB, the delay was found to be at maximum of 60 ns.
View Article and Find Full Text PDFScientificWorldJournal
December 2014
The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼ 94.4% with respect to experimental data.
View Article and Find Full Text PDFCharacteristics of fiber optical parametric amplifier (FOPA) with double-pass pump configuration are experimentally investigated. The double-pass pump FOPA exhibits more than two-fold steeper gain slope in comparison to the conventional FOPA due to elongation of effective fiber length. In the L-band amplification band, a secondary idler is generated and used as the transmission signal in lieu of the original L-band signal.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) is a medical diagnosis technique with high sensitivity and specificity. In this research, a new method based on SPR is proposed for rapid, 10-minute detection of the anti-dengue virus in human serum samples. This novel technique, known as rapid immunoglobulin M (IgM)-based dengue diagnostic test, can be utilized quickly and easily at the point of care.
View Article and Find Full Text PDFThis study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor.
View Article and Find Full Text PDFIn this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor.
View Article and Find Full Text PDFA new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper Kα and Kβ lines by using a flat α-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.
View Article and Find Full Text PDFHeavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method.
View Article and Find Full Text PDFAn all-optical generation of a millimeter wave carrier from a multiwavelength Brillouin-erbium fiber laser is presented. Four-channel output with spacing of about 21.5 GHz is generated from the fiber laser by controlling the gain in the cavity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2012
Spreading of evaporative liquid drops in a thin porous layer has been studied. The entire spreading process can be divided into three distinct phases according to the change of the wetted porous region size. The first phase is characterized by the expansion of the wetted porous region and shrinking of the liquid drop.
View Article and Find Full Text PDFThis paper details a theoretical modeling of Brillouin ring fiber laser which incorporates the interaction between multiple Brillouin Stokes signals. The ring cavity was pumped at several Brillouin pump (BP) powers and the output was measured through an optical coupler with various coupling ratios. The first-order Brillouin Stokes signal was saturated with the presence of the second-order Stokes signal in the cavity as a result of energy transfer between them.
View Article and Find Full Text PDFThis paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift.
View Article and Find Full Text PDFWe report an ultra-long Raman laser that implemented a variable pumping scheme in backward and forward configurations. Rayleigh backscattering effects were realized in the 51 km fiber length that functioned as a virtual mirror at one fiber end. With the employment of a fiber Bragg grating that has a peak reflection wavelength at 1553.
View Article and Find Full Text PDFWe demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value.
View Article and Find Full Text PDFLiquid crystal tunable planar Bragg Gratings produced by Direct UV Writing are capable of wavelength tuning of over 100GHz. However, such devices exhibit non-linear tuning curves with threshold points and hysteresis. We show that these effects are due to the formation of disclination structures in the liquid crystal and discuss the role of electrode defects and sample temperature on wavelength tuning.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.