Publications by authors named "Adib Zendedel"

The presenilin-1 (PSEN1) gene is crucial in developing Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common cause of dementia. Circular RNAs (circRNAs) are non-coding RNA generated through back-splicing, resulting in a covalently closed circular molecule. This study aimed to investigate PSEN1-gene-derived circular RNAs (circPSEN1s) and their potential functions in AD.

View Article and Find Full Text PDF

Background: Varicocele is characterized by abnormal dilation of the testicular vein, which results in hypoxia, the accumulation of reactive oxygen species, and the production of proinflammatory cytokines. It seems that a group of cytosolic receptors named nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, is activated and involved in the pathogenesis of varicocele.

Objective: We aim to determine the time course of NLRP3 inflammasome expression in the testis tissue following varicocele induction.

View Article and Find Full Text PDF

Background: Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility.

Methods: The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in the production of proinflammatory cytokines due to inflammasome activation. Lipocalin 2 (LCN2) is a small secretory glycoprotein upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 secretion is induced by infection, injury, and metabolic disorders.

View Article and Find Full Text PDF

Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple sclerosis (MS) is a complex central nervous system disease that involves both degeneration and inflammation, influenced by various mediators including the protein lipocalin 2 (LCN2).
  • In this study, researchers found that a specific type of astrocytes produces LCN2 in MS lesions and investigated its effects using different mouse models of MS that mimic different aspects of the disease.
  • The results suggest that LCN2 may help protect against the loss of oligodendrocytes and limit inflammation in MS, though the exact role and contributions of different brain cells remain unclear.
View Article and Find Full Text PDF

Aims: Spinal cord injury (SCI) is a debilitating neurological condition often associated with chronic neuroinflammation and redox imbalance. Oxidative stress is one of the main hallmark of secondary injury of SCI which is tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. In this study, we aimed at investigating the interplay between inflammation-related miRNAs and the Nrf2 pathway in animal model of SCI.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) induces a multitude of deleterious processes, including neuroinflammation and oxidative stress (OS) which contributed to neuronal damage and demyelination. Recent studies have suggested that increased formation of reactive oxygen species (ROS) and the consequent OS are critical events associated with SCI. However, there is still little information regarding the impact of these events on SCI.

View Article and Find Full Text PDF

Ischemic stroke is characterized by an occlusion of a cerebral blood vessel resulting in neuronal cell death due to nutritional and oxygen deficiency. Additionally, post-ischemic cell death is augmented after reperfusion. These events are paralleled by dysregulated miRNA expression profiles in the peri-infarct area.

View Article and Find Full Text PDF

Omega-3 polyunsaturated fatty acids (PUFA n3) ameliorate inflammation in different diseases and potentially improve neurological function after neuronal injury. Following spinal cord injury (SCI), inflammatory events result in caspase-1 mediated activation of interleukin-1 beta (IL-1b) and 18. We aim to evaluate the neuroprotective potency of PUFA n3 in suppressing the formation and activation of inflammasomes following SCI.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB).

View Article and Find Full Text PDF

Lipocalin 2 (LCN2), an immunomodulator, regulates various cellular processes such as iron transport and defense against bacterial infection. Under pathological conditions, LCN2 promotes neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes. Although it seems to have a negative influence on the functional outcome in spinal cord injury (SCI), the extent of its involvement in SCI and the underlying mechanisms are not yet fully known.

View Article and Find Full Text PDF

The activation of the CXCL12-CXCR4 signaling axis is implicated in the regulation of cell survival, proliferation, and mobilization of bone marrow stem cells into the injured site. We have shown in a previous study that intrathecal administration of CXCL12 reduces spinal cord tissue damage and neuroinflammation and provides functional improvement by reducing inflammasome activity and local inflammatory processes in an experimental spinal cord injury (SCI) rat model. Here, we aimed at investigating whether these neuroprotective effects rely on the control of CXCL12 signaling on microglial activation as microglia cells are known to be the primary immune cells of the brain.

View Article and Find Full Text PDF

Background: Thyroid carcinoma is the most common endocrine malignancy and anaplastic thyroid carcinoma (ATC) is a rare but most aggressive cancer. Melatonin has enhanced or induced apoptosis in many different cancer cells, however, there has not been any study on the effects of melatonin in the treatment of ATC. In this study, we examined the effect of melatonin on cytotoxicity in the human ATC cell line.

View Article and Find Full Text PDF

Studies have shown that acellular nerve xenografts do not require immunosuppression and use of acellular nerve xenografts for repair of peripheral nerve injury is safe and effective. However, there is currently no widely accepted standard chemical decellularization method. The purpose of this study is to investigate the efficiency of bovine-derived nerves decellularized by the modified Hudson's protocol in the repair of rat sciatic nerve injury.

View Article and Find Full Text PDF

The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a devastating neurological condition with a lack of neuroprotective therapeutic options, despite the reperfusion modalities thrombolysis and thrombectomy. Post-ischemic brain damage is aggravated by an excessive inflammatory cascade involving the activation and regulation of the pro-inflammatory cytokines IL-1β and IL-18 by inflammasomes. However, the role of AIM2 and NLRC4 inflammasomes and the influence of the neuroprotective steroids 17β-estradiol (E2) and progesterone (P) on their regulation after ischemic stroke have not yet been conclusively elucidated.

View Article and Find Full Text PDF

Objective: The exact mechanism, by which spinal cord injury (SCI) leads to a male subfertility is not well-known. Present study was conducted to determine the mechanisms that lead to the elevated end-product cytokines and inflammasomes in the testes of an SCI rat model. Moreover, we evaluated the inflammasome components following SCI in testis over a defined time periods.

View Article and Find Full Text PDF

The effects of mechanical stress on cells and their extracellular matrix, especially in gliding sections of tendon, are still poorly understood. This study sought to compare the effects of uniaxial stretching on both gliding and traction areas in the same tendon. Flexor digitorum longus muscle tendons explanted from rats were subjected to stretching in a bioreactor for 6, 24, or 48 h, respectively, at 1 Hz and an amplitude of 2.

View Article and Find Full Text PDF

Background: Varicocele is a common cause of male infertility with multifactorial etiology. Inflammation is a characteristic pathological event that occurs in the testis tissue following the varicocele. The aim of this study was to investigate expression of nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome components and cytokines in semen of varicocele and control subjects.

View Article and Find Full Text PDF

Oxidative stress is a pathophysiological hallmark of many CNS diseases, among multiple sclerosis (MS). Accordingly, boosting the astrocytic transcription factor nuclear factor E2-related factor 2 (Nrf2) system in an MS mouse model efficiently ameliorates oligodendrocyte loss, neuroinflammation and axonal damage. Moreover, Dimethylfumarate, an efficient activator of Nrf2, has recently been approved as therapeutic option in MS treatment.

View Article and Find Full Text PDF

Even today, ischemic stroke is a major cause of death and disabilities because of its high incidence, limited treatments and poor understanding of the pathophysiology of ischemia/reperfusion, neuroinflammation and secondary injuries following ischemic stroke. The function of microglia as a part of the immune system of the brain following ischemic stroke can be destructive or protective. Recent surveys indicate that melatonin, a strong antioxidant agent, has receptors on microglial cells and can regulate them to protective form; yet, more findings are required for better understanding of this mechanism, particularly in the reperfusion phase.

View Article and Find Full Text PDF

Granulosa Cells (GCs) are sensitive to excessive production of reactive oxygen species (ROS). Quercetin (QUR) is a free radical scavenger which can alleviate oxidative stress through nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) pathway and thioredoxin (Trx) system. We aimed to explore the probable protective role of QUR on cultured human GCs treated with hydrogen peroxide (HO) as an inducer of oxidative stress.

View Article and Find Full Text PDF

Ischemic stroke causes rapid hypoxic damage to the core neural tissue which is followed by graded chronological tissue degeneration in the peri-infarct zone. The latter process is mainly triggered by neuroinflammation, activation of inflammasomes, proinflammatory cytokines, and pyroptosis. Besides microglia, astrocytes play an important role in the fine-tuning of the inflammatory network in the brain.

View Article and Find Full Text PDF