Publications by authors named "Adhip Agarwala"

Lindbladian formalism, as tuned to dissipative and open systems, has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems. We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model-where the bath acts both as a source and a sink of fermionic particles with different coupling rates. As a function of these two couplings, we investigate the steady state, its entanglement content, and its approach from varying initial states.

View Article and Find Full Text PDF

Band topology is traditionally analyzed in terms of gauge-invariant observables associated with crystalline Bloch wave functions. Recent work has demonstrated that many of the free fermion topological characteristics survive even in an amorphous setting. In this Letter, we extend these studies to incorporate the effect of strong repulsive interactions on the fate of topology and other correlation induced phenomena.

View Article and Find Full Text PDF

Much of the current understanding of topological insulators, which informs the experimental search for topological materials and systems, is based on crystalline band theory, where local electronic degrees of freedom at different crystal sites hybridize with each other in ways that produce nontrivial topology. Here we provide a novel theoretical demonstration of realizing topological phases in amorphous systems, as exemplified by a set of sites randomly located in space. We show this by constructing hopping models on such random lattices whose gapped ground states are shown to possess nontrivial topological nature (characterized by Bott indices) that manifests as quantized conductances in systems with a boundary.

View Article and Find Full Text PDF

The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder.

View Article and Find Full Text PDF