Cement production is environmentally unsustainable due to the high anthropogenic carbon emissions produced. Supplementary cementitious materials (SCMs), derived from the by-products of different industries, have been deemed an effective way to reduce carbon emissions. The reduction in carbon emissions is achieved by lowering the clinker factor of cement, through a partial replacement with an SCM.
View Article and Find Full Text PDFThis research investigates the flexural and durability performances of reinforced concrete (RC) beams made with induction furnace steel slag aggregate (IFSSA) as a replacement for fired clay brick aggregate (FCBA). To achieve this, 27 RC beams (length: 750 mm, width: 125 mm, height: 200 mm) were made with FCBA replaced by IFSSA at nine replacement levels of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% (by volume). Flexural tests of RC beams were conducted by a four-point loading test, where the deflection behavior of the beams was monitored through three linear variable displacement transducers (LVDT).
View Article and Find Full Text PDFThe use of waste streams for the production of sustainable cement-based materials cannot be overemphasized. This study investigates the feasibility of reusing waste steel slag (WSS) and waste clay brick (WCB) as a replacement for natural sand (NS) in mortar. Numerous studies have reported mainly the compressive strength of concrete/mortar, while limited research is available that focuses on the tensile and flexural strength of mortar, and especially the performance at elevated temperature.
View Article and Find Full Text PDFThis paper investigates the possibility of utilizing steel slags produced in the steelmaking industry as an alternative to burnt clay brick aggregate (BA) in concrete. Within this context, physical, mechanical (i.e.
View Article and Find Full Text PDFThis study evaluates the mechanical, durability, and residual compressive strength (after being exposed to 20, 120, 250, 400 and 600 °C) of mortar that uses recycled iron powder (RIP) as a fine aggregate. Within this context, mechanical strength, shrinkage, durability, and residual strength tests were performed on mortar made with seven different percentages (0%, 5%, 10%, 15%, 20%, 30% and 50%) of replacement of natural sand (NS) by RIP. It was found that the mechanical strength of mortar increased when replaced with up to 30% NS by RIP.
View Article and Find Full Text PDF