Publications by authors named "Adetayo Abdulmumin Adebisi"

This study focuses on optimizing double stir casting process parameters to enhance the tensile strength of hybrid composites comprising aluminum alloy, brown pumice, and coal ash, intended for brake disc applications. Analytical techniques including X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the composite constituents. The Taguchi method was utilized for experimental design and optimization to determine the optimal weight compositions of brown pumice and coal ash, as well as stir casting parameters (stirrer speed, pouring temperature, and stirring duration).

View Article and Find Full Text PDF

Aluminium matrix composites, which are a subclass of metal matrix composites, have characteristics including low density, high stiffness and strength, better wear resistance, controlled thermal expansion, greater fatigue resistance, and improved stability at high temperatures. The scientific and industrial communities are interested in these composites because they may be used to manufacture a broad variety of components for cutting-edge applications. This has study observed how the stirring speed, processing temperature, and stirring duration of the stir casting process affected the percentage elongation of Al-Pumice (PP)-Carbonized Coal Particles (CCP) hybrid composites.

View Article and Find Full Text PDF