The present study focuses on the synthesis and characterization of lanthanide-containing paramagnetic ionic liquids (ILs), [CCIm][MClX] ( = 4, 6, and 8; M = Gd, Dy, and Ho; X = Br and Cl), derived from 1-alkyl-3-methylimidazolium anions. These paramagnetic ILs exhibit low vapor pressure, high thermal stability, physiochemical stability, and tunability, along with significant magnetic susceptibility, making them of interest in advanced material applications that may take advantage of neat liquids with magnetic susceptibility. Structural and physical properties were determined using FTIR, H NMR, DSC, and TGA.
View Article and Find Full Text PDFThis study investigates the potential of composite allotrope boron nitride nanobarbs (BNNBs) as nanoparticles for enhancing the thermal conductivity of nanofluids based on mixtures of ethylene glycol and propylene glycol with water. BNNBs are allotrope composites composed of boron nitride nanotube cores with walls decorated with attached hexagonal boron nitride crystals, creating a jagged morphology that facilitates the formation of a connected network and contributes to the enhancement of thermal conductivity in nanofluids. BNNBs exhibit high thermal conductivity due to efficient phonon transfer and they are electrical insulators owing to their wide bandgap.
View Article and Find Full Text PDF