Publications by authors named "Adenot P"

ZC3H11A (zinc finger CCCH domain-containing protein 11A) is a stress-induced mRNA-binding protein required for efficient growth of nuclear-replicating viruses. The cellular functions of ZC3H11A during embryonic development are unknown. Here, we report the generation and phenotypic characterization of knockout (KO) mice.

View Article and Find Full Text PDF

The culture media used throughout the production (IVP) of bovine embryos remain complex. The serum added to culture media in order to improve embryo development negatively impacts the cryotolerance of blastocysts. Periconceptional prostaglandin E2 (PGE2) signaling is known to exert prosurvival effects on -generated blastocysts.

View Article and Find Full Text PDF

Background: Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) is an innovative treatment against peritoneal carcinomatosis. Doxorubicin is a common intra-venous chemotherapy used for peritoneal carcinomatosis and for PIPAC. This study evaluated the impact of increased PIPAC intraperitoneal pressure on the distribution and cell penetration of doxorubicin in a sheep model.

View Article and Find Full Text PDF

Heat stress compromises bovine oocyte developmental competence, but the effects of high temperature during oocyte maturation on embryo chromatin organization is unknown. In this study bovine oocytes were exposed to heat shock (41°C) for 12 h during in vitro maturation and then submitted to in vitro fertilization. The heat shock did not affect (P > 0.

View Article and Find Full Text PDF
Article Synopsis
  • - Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent different stages of pluripotency, with ESCs being in a naive state and EpiSCs in a primed state, each maintained by specific signaling pathways and culture conditions, particularly the use of kinase inhibitors for ESCs.
  • - A comparative study reveals that 2i-ESCs, representing ground naive pluripotency, exhibit high levels of H3K27me3 and low DNA methylation at pericentromeric heterochromatin, whereas serum-cultured ESCs show higher satellite repeat transcription levels.
  • - The research indicates that as cells transition from naive to primed states,
View Article and Find Full Text PDF

Background: Targeting cells of the host immune system is a promising approach to fight against Influenza A virus (IAV) infection. Macrophage cells use the NADPH oxidase-2 (NOX2) enzymatic complex as a first line of defense against pathogens by generating superoxide ions O and releasing HO. Herein, we investigated whether targeting membrane -embedded NOX2 decreased IAV entry via raft domains and reduced inflammation in infected macrophages.

View Article and Find Full Text PDF

Apoptotic activity is a common physiological process which culminates at the blastocyst stage in the preimplantation embryo of many mammals. The degree of embryonic cell death can be influenced by the oocyte microenvironment. However, the prognostic significance of the incidence of apoptosis remains undefined.

View Article and Find Full Text PDF

The first lineage specification during mammalian embryo development can be visually distinguished at the blastocyst stage. Two cell lineages are observed on the embryonic-abembryonic axis of the blastocyst: the inner cell mass and the trophectoderm. The timing and mechanisms driving this process are still not fully understood.

View Article and Find Full Text PDF

The cytosolic lipid droplets (cLDs) store excess intracellular lipids, and perilipin-2 is believed to protect cLDs from degradation. Here, we investigated the role of the small G-protein Arf1 and the proteasome in the fates of perilipin-2 and cLDs. In oleate-loaded cells, upon brefeldin A (BFA) treatment, perilipin-2 remained associated with cLDs for at least 30 min before significant release, and proteasomal degradation-mediated decrease was observed.

View Article and Find Full Text PDF

To investigate the embryonic genome organization upon fertilization and somatic cell nuclear transfer (SCNT), we tracked HP1β and CENP, two well-characterized protein markers of pericentric and centromeric compartments respectively, in four types of embryos produced by rabbit in vivo fertilization, rabbit parthenogenesis, rabbit-to-rabbit, and bovine-to-rabbit SCNT. In the interphase nuclei of rabbit cultured fibroblasts, centromeres and associated pericentric heterochromatin are usually isolated. Clustering into higher-order chromatin structures, such as the chromocenters seen in mouse and bovine somatic cells, could not be observed in rabbit fibroblasts.

View Article and Find Full Text PDF

Background: Embryonic development proceeds through finely tuned reprogramming of the parental genomes to form a totipotent embryo. Cells within this embryo will then differentiate and give rise to all the tissues of a new individual. Early embryonic development thus offers a particularly interesting system in which to analyze functional nuclear organization.

View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) is the injection of a donor nucleus into an enucleated egg. Despite the use of this technology for many years in research, it is still quite inefficient. One of the causes for this is thought to be incorrect or incomplete genome reprogramming.

View Article and Find Full Text PDF

Phosphorylation of histone H3 at Ser10 (H3S10P) has been linked to a variety of cellular processes, such as chromosome condensation and gene activation/silencing. Remarkably, in mammalian somatic cells, H3S10P initiates in the pericentromeric heterochromatin during the late G2 phase, and phosphorylation spreads throughout the chromosomes arms in prophase, being maintained until the onset of anaphase when it gets dephosphorylated. Considerable studies have been carried out about H3S10P in different organisms; however, there is little information about this histone modification in mammalian embryos.

View Article and Find Full Text PDF

Due to the marked cytoplasmic opacity of canine oocytes, the diagnosis of their nuclear status is difficult. The objective of the present study was to evaluate the accuracy of Hoechst staining observed under epifluorescence wide-field microscopy [living oocyte observation (LivOO)] by comparison to a reference technique [DNA staining with ethidium homodimer-2 under confocal microscopy; fixed oocyte observation (FixOO)]. Four Hoechst 33342 concentrations (200 ng, 500 ng, 1 μg, 2 μg/mL) were tested and 1 μg/mL was the lowest one with the lowest proportion of oocytes in which DNA was missed.

View Article and Find Full Text PDF

The reprogramming of DNA methylation in early embryos has been considered to be essential for the reprogramming of differentiated parental genomes to totipotency, the transcription of embryonic genome activation (EGA) and subsequent development. However, its degree appears to differ as a function of species and it may be altered by the in vitro environment. While the rabbit is a pertinent model for species with a delayed EGA because both in vivo and in vitro developed embryos are easily available, the status of DNA methylation levels in both parental genomes after fertilization remains controversial.

View Article and Find Full Text PDF

During the periovulatory period, the induction of prostaglandin G/H synthase-2 (PTGS2) expression in cumulus cells and associated prostaglandin E2 (PGE2) production are implicated in the terminal differentiation of the cumulus-oocyte complex. During the present study, the effects of the PTGS2/PGE2 pathway on the developmental competence of bovine oocytes were investigated using an in vitro model of maturation, fertilization, and early embryonic development. The specific inhibition of PTGS2 activity with NS-398 during in vitro maturation (IVM) significantly restricted mitogen-activated protein kinase (MAPK) activation in oocytes at the germinal vesicle breakdown stage and reduced both cumulus expansion and the maturation rate after 22 h of culture.

View Article and Find Full Text PDF

In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms.

View Article and Find Full Text PDF

Efficient reprograming of the donor cell genome in nuclear transfer (NT) embryos is linked to the ability of the embryos to sustain full-term development. As the nuclear architecture has recently emerged as a key factor in the regulation of gene expression, we questioned whether early bovine embryos obtained from transfer of cultured fibroblasts into enucleated oocytes would adopt an embryo-like nuclear organization. We studied the dynamics of constitutive heterochromatin in the stages prior to embryonic genome activation by distribution analysis of heterochromatin protein CBX1 (HP1), centromeric proteins CENPA and CENPB, and histone H3 three-methylated at lysine 9.

View Article and Find Full Text PDF

Whey acidic protein (WAP) and casein (CSN) genes are among the most highly expressed milk protein genes in the mammary gland of the lactating mouse. Their tissue-specific regulation depends on the activation and recruitment of transcription factors, and chromatin modifications in response to hormonal stimulation. We have investigated if another mechanism, such as specific positioning of the genes in the nucleus, could be involved in their functional regulation.

View Article and Find Full Text PDF

Given the prominence and the biological importance of the nucleus it is remarkable how little is still known about structure-forming proteins in the nuclear interior. The karyoskeletal protein NO145 has been identified as a major constituent of a filamentous network surrounding the amplified nucleoli of Xenopus laevis oocytes. We now show that an orthologous protein also occurs in female germ cells of a wide range of other vertebrates, where it forms dot-like structures.

View Article and Find Full Text PDF

We have developed a method to produce live somatic clones in the rabbit, one of the mammalian species considered up to now as difficult to clone. To do so, we have modified current cloning protocols proven successful in other species by taking into account both the rapid kinetics of the cell cycle of rabbit embryos and the narrow window of time for their implantation after transfer into foster recipients. Although our method still has a low level of efficiency, it has produced several clones now proven to be fertile.

View Article and Find Full Text PDF

Mice have recently been successfully cloned from embryonic stem (ES) cells. However, these fast dividing cells provide a heterogeneous population of donor nuclei, in terms of cell cycle stage. Here we used metaphases as a source of donor nuclei because they offer the advantage of being both unambiguously recognizable and synchronous with the recipient metaphase II oocyte.

View Article and Find Full Text PDF

A striking feature of early embryogenesis in a number of organisms is the use of embryonic linker histones or high mobility group proteins in place of somatic histone H1. The transition in chromatin composition towards somatic H1 appears to be correlated with a major increase in transcription at the activation of the zygotic genome. Previous studies have supported the idea that the mouse embryo essentially follows this pattern, with the significant difference that the substitute linker histone might be the differentiation variant H1 degrees, rather than an embryonic variant.

View Article and Find Full Text PDF

In the mouse embryo, transcriptional activation begins during S/G2 phase of the first cell cycle when paternal and maternal chromatin are still in separate nuclear entities within the same cytoplasm. At this time, the male pronucleus exhibits greater transcriptional activity than the female pronucleus. Since acetylation of histones in the nucleosome octamer exerts a regulatory influence on gene expression, we investigated changes in histone acetylation during the remodeling of paternal and maternal chromatin from sperm entry through to minor genome activation and mitosis.

View Article and Find Full Text PDF

In mammalian embryos, zygotic gene transcription initiates after a limited number of cell divisions through a two-step process termed the zygotic gene activation (ZGA). Here we report that RNA polymerase II undergoes major changes in mouse and rabbit preimplantation embryos during the ZGA. In transcriptionally inactive unfertilized oocytes, the RNA polymerase II largest subunit is predominantly hyperphosphorylated on its carboxy-terminal domain (CTD).

View Article and Find Full Text PDF