Advantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector.
View Article and Find Full Text PDFThe ability of artificial neural networks (ANNs) to adapt to input data and perform generalizations is intimately connected to the use of nonlinear activation and propagation functions. Quantum versions of ANN have been proposed to take advantage of the possible supremacy of quantum over classical computing. To date, all proposals faced the difficulty of implementing nonlinear activation functions since quantum operators are linear.
View Article and Find Full Text PDFIn this data article, we provide a time series dataset obtained for an application of wine quality detection focused on spoilage thresholds. The database contains 235 recorded measurements of wines divided into three groups and labeled as high quality (HQ), average quality (AQ) and low quality (LQ), in addition to 65 ethanol measurements. This dataset was collected using an electronic nose system (E-Nose) based on Metal Oxide Semiconductor (MOS) gas sensors, self-developed at the Universidade Federal Rural de Pernambuco (Brazil).
View Article and Find Full Text PDFIn this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons.
View Article and Find Full Text PDF