Objectives: Neuromuscular respiratory failure after cervical spinal cord injury (cSCI) can lead to dependence on an invasive mechanical ventilator. Ventilator-free breathing after cSCI is associated with improved morbidity, mortality, and quality of life. We investigated the use of diaphragm muscle ultrasound to predict ventilator weaning outcomes after cSCI.
View Article and Find Full Text PDFIntroduction/aims: Phrenic neuropathy (PhN) impairs diaphragm muscle function, causing a spectrum of breathing disability. PhN etiologies and their natural history are ill-defined. This knowledge gap hinders informed prognosis and management decisions.
View Article and Find Full Text PDFIntroduction/aims: There is a dearth of knowledge regarding the status of infralesional lower motor neurons (LMNs) in individuals with traumatic cervical spinal cord injury (SCI), yet there is a growing need to understand how the spinal lesion impacts LMNs caudal to the lesion epicenter, especially in the context of nerve transfer surgery to restore several key upper limb functions. Our objective was to determine the frequency of pathological spontaneous activity (PSA) at, and below, the level of spinal injury, to gain an understanding of LMN health below the spinal lesion.
Methods: Ninety-one limbs in 57 individuals (53 males, mean age = 44.
In this review, we highlight the important role of the clinical electrodiagnostic (EDX) evaluation after cervical spinal cord injury (SCI). Our discussion focuses on the need for timely, frequent, and accurate EDX evaluations in the context of nerve transfer surgery to restore critical upper limb functions, including elbow extension, hand opening, and hand closing. The EDX evaluation is crucial to define the extent of lower motor neuron lesions and determine candidacy for surgery.
View Article and Find Full Text PDFBackground: The use of pattern recognition-based methods to control myoelectric upper-limb prostheses has been well studied in individuals with high-level amputations but few studies have demonstrated that it is suitable for partial-hand amputees, who often possess a functional wrist. This study's objective was to evaluate strategies that allow partial-hand amputees to control a prosthetic hand while allowing retain wrist function.
Methods: EMG data was recorded from the extrinsic and intrinsic hand muscles of six non-amputees and two partial-hand amputees while they performed 4 hand motions in 13 different wrist positions.
Pattern recognition-based myoelectric control of upper-limb prostheses has the potential to restore control of multiple degrees of freedom. Though this control method has been extensively studied in individuals with higher-level amputations, few studies have investigated its effectiveness for individuals with partial-hand amputations. Most partial-hand amputees retain a functional wrist and the ability of pattern recognition-based methods to correctly classify hand motions from different wrist positions is not well studied.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2016
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
Partial-hand amputees often retain good residual wrist motion, which is essential for functional activities involving use of the hand. Thus, a crucial design criterion for a myoelectric, partial-hand prosthesis control scheme is that it allows the user to retain residual wrist motion. Pattern recognition (PR) of electromyographic (EMG) signals is a well-studied method of controlling myoelectric prostheses.
View Article and Find Full Text PDF