Morphine stimulates the internalization of mu-opioid receptors (MORs) in transfected cell models to a lesser degree than opioid peptides and other analgesic drugs, such as methadone, and previous studies have reported that morphine does not produce a detectable redistribution of MORs in neural tissue after either acute or chronic administration. Nevertheless, morphine produces profound physiological effects, raising the question of whether receptor trafficking plays any role in the in vivo actions of morphine. We investigated the effects of opiate drugs on recombinant and native opioid receptors in the nucleus accumbens, which plays an important role in mediating the behavioral effects of opiate drugs.
View Article and Find Full Text PDFActivation of kappa-opioid receptors (KOR) in the medial prefrontal cortex (mPFC) modulates excitatory transmission, which may involve interactions with N-methyl-D-aspartate (NMDA) glutamate receptors. We investigated possible anatomical correlates of this modulation by using dual labeling electron microscopy to examine the cellular distributions of antibodies raised against KOR and the R1 subunit of the NMDA receptor (NR1). KOR immunoreactivity primarily was localized to plasma and vesicular membranes of axons and axon terminals that were morphologically heterogeneous.
View Article and Find Full Text PDF