Publications by authors named "Ademir S F Araujo"

Limited studies have explored the complex and intense crosstalk between microbes within synthetic microbial communities (SynComs). Here, we highlight recent findings by Zohair et al., who unraveled the metabolic interactions between co-cultured microbes.

View Article and Find Full Text PDF

Biochar is an effective material for enhancing soil ecosystem services. However, the specific impacts of biochar on microbial indicators, particularly in degraded soils, remain poorly understood. This study aimed to evaluate the effects of biochar produced from cashew residues and sewage sludge, in a highly degraded soil, on microbial indicators.

View Article and Find Full Text PDF
Article Synopsis
  • Plant heterosis traditionally relies on the genetic differences between parent plants.
  • Recent research by Liu et al. introduces the concept of 'endophytic microbiome-induced heterosis', highlighting that hybrid seeds have unique microbiomes that enhance germination rates.
  • This discovery could have significant implications for sustainable agriculture by improving crop yields through the use of hybrid plants with beneficial microbial communities.
View Article and Find Full Text PDF

Sustainable management of the Amazon rainforest is fundamental for supporting life on earth because of its crucial role in sequestering carbon. One of the species grown in the forest is açaí (Euterpe oleracea), which is an important food and income source for its inhabitant. The acai seed, resulting from the processing of the fruit, is a solid organic residue, which has been an agent of undesirable environmental impacts such as natural landscape modifications, clogging sewers and water courses, eutrophication of surface waters.

View Article and Find Full Text PDF

Soil desertification poses a critical ecological challenge in arid and semiarid climates worldwide, leading to decreased soil productivity due to the disruption of essential microbial community processes. Fungi, as one of the most important soil microbial communities, play a crucial role in enhancing nutrient and water uptake by plants through mycorrhizal associations. However, the impact of overgrazing-induced desertification on fungal community structure, particularly in the Caatinga biome of semiarid regions, remains unclear.

View Article and Find Full Text PDF

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region.

View Article and Find Full Text PDF

Land desertification poses a significant challenge in the Brazilian semiarid region, encompassing a substantial portion of the country. Within this region, the detrimental effects of human activities, particularly unsuitable anthropic actions, have resulted in diminished vegetation cover and an accelerated rate of soil erosion. Notably, practices such as overgrazing and the conversion of native forests into pasturelands have played a pivotal role in exacerbating the process of land desertification.

View Article and Find Full Text PDF

Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L in soil during planting; sodium silicate spray at 40 mmol L on leaves at 75 days after emergence).

View Article and Find Full Text PDF

Soybean-maize are cultivated in different management systems, such as no-tillage and pastures, which presents potential to add organic residues, and it can potentially impacts the soil microbial community present in these systems. Thus, this study aimed to examine the effects of different soybean-maize management practices on the diversity and composition of soil microbial communities. Specifically, 16 S rRNA amplicon sequencing was used to investigate whether the use of pasture species in a fallowing system influences microbial communities in a soybean-maize rotation system, as compared to conventional tillage and no-tillage systems.

View Article and Find Full Text PDF

Imazethapyr and flumioxazin are widely recommended herbicides for soybean fields due to their broad-spectrum effects. However, although both herbicides present low persistence, their potential impact on the community of plant growth-promoting bacteria (PGPB) is unclear. To address this gap, this study assessed the short-term effect of imazethapyr, flumioxazin, and their mixture on the PGPB community.

View Article and Find Full Text PDF

Composted tannery sludge (CTS) promotes shifts in soil chemical properties, affecting microbial communities. Although the effect of CTS application on the bacterial community has been studied, it is unclear whether this impact discriminates between the dominant and rare species. This present study investigated how the dominant and rare bacterial communities respond over time to different concentrations of CTS application (0, 2.

View Article and Find Full Text PDF

Chromium (Cr) contamination can affect microorganisms in the soil, but the response of the microbial community in the rhizosphere of plants grown in Cr-contaminated soils is poorly understood. Therefore, this study assessed the microbial community, by amplicon sequencing, in the rhizosphere of maize and cowpea growing in uncontaminated (∼6.0 mg kg Cr) and Cr-contaminated soils (∼250 mg kg Cr).

View Article and Find Full Text PDF

Bacteria have potential to tolerate and reduce metals. This study evaluated the potential of selected bacterial strains in tolerating and reducing chromium (Cr). Six bacterial strains (Rhizobium miluonense LCC01, LCC04, LCC05, and LCC69; Rhizobium pusense LCC43; and Agrobacterium deltaense LCC50) showed tolerance to Cr(VI) (16 and 32 μg mL), reduction potential of Cr(VI) (from 50 to 80%), and efficiency in producing exopolysaccharides.

View Article and Find Full Text PDF

The tannery industries generate a solid waste known as tannery sludge, which is composed of organic and inorganic compounds, mainly chromium (Cr). When Cr is not removed from the tannery sludge, this solid waste is metal-rich and its application could affect the soil microorganisms. Alternatively, the composting of the tannery sludge can contribute to decreasing the concentration of Cr in the composted tannery sludge (CTS).

View Article and Find Full Text PDF
Article Synopsis
  • Soil desertification negatively affects social, economic, and environmental aspects globally, particularly in Brazilian drylands where mycorrhizal diversity is underexplored.
  • The study hypothesized that overgrazing alters the structure of Arbuscular Mycorrhizal Fungi (AMF) communities compared to native areas, and that grazing exclusion can help restore these communities.
  • Results indicated that restored soils had higher organic matter and AMF diversity, while degraded soils showed poorer conditions, highlighting long-term grazing exclusion as a viable strategy for AMF diversity restoration in semiarid regions.
View Article and Find Full Text PDF

Soils from Brazilian semiarid regions are highly vulnerable to desertification due to their geology, climate, human actions, and intensive land use that contribute to desertification. Therefore, areas under desertification have increased in the Brazilian semiarid region and it has negatively changed the soil bacterial and archaeal communities and their functionality. On the other hand, although restoration strategies are expensive and there are few soils restoration programs, some practices have been applied to restore these soils under desertification.

View Article and Find Full Text PDF

Plants modulate the soil microbiota and select a specific microbial community in the rhizosphere. However, plant domestication reduces genetic diversity, changes plant physiology, and could have an impact on the associated microbiome assembly. Here, we used 16S rRNA gene sequencing to assess the microbial community in the bulk soil and rhizosphere of wild, semi-domesticated, and domesticated genotypes of lima bean (Phaseolus lunatus), to investigate the effect of plant domestication on microbial community assembly.

View Article and Find Full Text PDF

Plant breeding reduces the genetic diversity of plants and could influence the composition, structure, and diversity of the rhizosphere microbiome, selecting more homogeneous and specialized microbes. In this study, we used 16S rRNA sequencing to assess the bacterial community in the rhizosphere of different lines and modern cowpea cultivars, to investigate the effect of cowpea breeding on bacterial community assembly. Thus, two African lines (IT85F-2687 and IT82D-60) and two Brazilian cultivars (BRS-Guariba and BRS-Tumucumaque) of cowpea were assessed to verify if the generation advance and genetic breeding influence the bacterial community in the rhizosphere.

View Article and Find Full Text PDF

The data included in this article supplement the research article titled "Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga (manuscript ID: STOTEN-D-21-19067R1)". This data article included the analysis of 18 chemical variables in 36 composite samples (included 4 replicates) of soils from the Microregion of Garanhuns (Northeast Brazil) and also partial 16S rRNA gene sequences from genomic DNA extracted from 27 of these samples (included 3 best quality replicates) for paired-end sequencing (up to 2 × 300 bp) in Illumina MiSeq platform (NCBI - BioProject accession: PRJNA753707). Soils were collected in August 2018 in a tropical subhumid region from the Brazilian Caatinga, along with 27 composite samples from the aboveground part of pastures to determine nutritional quality based on leaf N content.

View Article and Find Full Text PDF

The assessment of ecosystem functions in Cerrado is important to implement practices of conservation. Recently, a 'rapid ecosystem function assessment' (REFA) for measuring ecosystem functions has been proposed and tested as a suitable method. Thus, this study aimed to assess the proxies of ecosystem functions of three physiognomies of Cerrado through REFA.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how converting forests to pastures in the Caatinga biome affects soil bacterial diversity, which is not well understood.
  • The researchers found changes in the bacterial community structure, noting that more productive pastures host a greater diversity and a more complex network of bacteria compared to less productive pastures.
  • Key bacterial groups like Proteobacteria and Acidobacteria are more common in forests, while Actinobacteria and Firmicutes dominate pastures, indicating significant ecological shifts due to land-use changes.
View Article and Find Full Text PDF

The process of composting has been proposed as a biological alternative to improve the quality of tannery sludge (TS) by the action of microbial communities. However, there is limited knowledge about the dynamic of these microbial communities during the composting process. This study assessed the responses of bacterial and archaeal communities during TS composting using the 16S rRNA sequencing.

View Article and Find Full Text PDF

Studies evaluating the structure and diversity of bacterial communities in arid environments including the rhizosphere of local and adapted plant species are important. Therefore, we used a sequencing of the 16S ribosomal RNA gene for describing the structure and diversity of soil bacterial community in three zones: Agreste, Transition and Sertão. The bacterial community was clustered in 9,838 OTUs in Agreste, 8,388 OTUs in the transition, and 14,849 OTUs for Sertão.

View Article and Find Full Text PDF

Soil microbial communities act on important environmental processes, being sensitive to the application of wastes, mainly those potential contaminants, such as tannery sludge. Due to the microbiome complexity, graph-theoretical approaches have been applied to represent model microbial communities interactions and identify important taxa, mainly in contaminated soils. Herein, we performed network and statistical analyses into microbial 16S rRNA gene sequencing data from soil samples with the application of different levels of composted tannery sludge (CTS) to assess the most connected nodes and the nodes that act as bridges to identify key microbes within each community.

View Article and Find Full Text PDF

Soil microbial communities represent the largest biodiversity on Earth, holding an important role in promoting plant growth and productivity. However, the knowledge about how soil factors modulate the bacteria community structure and distribution in tropical regions remain poorly understood, mainly in different cowpea producing ecoregions belonging to Northeastern Brazil. This study addressed the bacterial community along three different ecoregions (Mata, Sertão, and Agreste) through the16S rRNA gene sequencing.

View Article and Find Full Text PDF