Motivation: Discovering the evolution of a tumor may help identify driver mutations and provide a more comprehensive view on the history of the tumor. Recent studies have tackled this problem using multiple samples sequenced from a tumor, and due to clinical implications, this has attracted great interest. However, such samples usually mix several distinct tumor subclones, which confounds the discovery of the tumor phylogeny.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2019
Hajirasouliha and Raphael (WABI 2014) proposed a model for deconvoluting mixed tumor samples measured from a collection of high-throughput sequencing reads. This is related to understanding tumor evolution and critical cancer mutations. In short, their formulation asks to split each row of a binary matrix so that the resulting matrix corresponds to a perfect phylogeny and has the minimum number of rows among all matrices with this property.
View Article and Find Full Text PDF