IEEE Trans Image Process
February 2009
We consider optimal formulations of spread spectrum watermark embedding where the common requirements of watermarking, such as perceptual closeness of the watermarked image to the cover and detectability of the watermark in the presence of noise and compression, are posed as constraints while one metric pertaining to these requirements is optimized. We propose an algorithmic framework for solving these optimal embedding problems via a multistep feasibility approach that combines projections onto convex sets (POCS) based feasibility watermarking with a bisection parameter search for determining the optimum value of the objective function and the optimum watermarked image. The framework is general and can handle optimal watermark embedding problems with convex and quasi-convex formulations of watermark requirements with assured convergence to the global optimum.
View Article and Find Full Text PDFPurpose: To investigate the use of four-dimensional (4D) co-occurrence-based texture analysis to distinguish between nonmalignant and malignant tissues in dynamic contrast-enhanced (DCE) MR images.
Materials And Methods: 4D texture analysis was performed on DCE-MRI data sets of breast lesions. A model-free neural network-based classification system assigned each voxel a "nonmalignant" or "malignant" label based on the textural features.