Publications by authors named "Adem C Koksal"

The underlying mechanisms contributing to injury-induced infection susceptibility remain poorly understood. Here, we describe a rapid increase in neutrophil cell numbers in the lungs following induction of thermal injury. These neutrophils expressed elevated levels of programmed death ligand 1 (PD-L1) and exhibited altered gene expression profiles indicative of a reparative population.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) constitute major drug targets due to their involvement in critical biological functions and pathophysiological disorders. The leading challenge in their structural and functional characterization has been the need for a lipid environment to accommodate their hydrophobic cores. Here, we report an antibody scaffold mimetic (ASM) platform where we have recapitulated the extracellular functional domains of the GPCR, C-X-C chemokine receptor 4 (CXCR4) on a soluble antibody framework.

View Article and Find Full Text PDF

In αI integrins, including leukocyte function-associated antigen 1 (LFA-1), ligand-binding function is delegated to the αI domain, requiring extra steps in the relay of signals that activate ligand binding and coordinate it with cytoplasmic signals. Crystal structures reveal great variation in orientation between the αI domain and the remainder of the integrin head. Here, we investigated the mechanisms involved in signal relay to the αI domain, including whether binding of the ligand intercellular adhesion molecule-1 (ICAM-1) to the αI domain is linked to headpiece opening and engenders a preferred αI domain orientation.

View Article and Find Full Text PDF

Integrins are adhesion receptors that transmit force across the plasma membrane between extracellular ligands and the actin cytoskeleton. In activation of the transforming growth factor-β1 precursor (pro-TGF-β1), integrins bind to the prodomain, apply force, and release the TGF-β growth factor. However, we know little about how integrins bind macromolecular ligands in the extracellular matrix or transmit force to them.

View Article and Find Full Text PDF

Antibody therapy against antibiotics resistant Klebsiella pneumoniae infections represents a promising strategy, the success of which depends critically on the ability to identify appropriate antibody targets. Using a target-agnostic strategy, we recently discovered MrkA as a potential antibody target and vaccine antigen. Interestingly, the anti-MrkA monoclonal antibodies isolated through phage display and hybridoma platforms all recognize an overlapping epitope, which opens up important questions including whether monoclonal antibodies targeting different MrkA epitopes can be generated and if they possess different protective profiles.

View Article and Find Full Text PDF

Antibodies carry out a plethora of functions through their crystallizable fragment (Fc) regions, which can be naturally tuned by the adoption of several isotypes and post-translational modifications. Protein engineering enables further Fc function modulations through modifications of the interactions between the Fc and its functional partners, including FcγR, FcRn, complement complex, and additions of auxiliary functional units. Due to the many functions embedded within the confinement of an Fc, a suitable balance must be maintained for a therapeutic antibody to be effective and safe.

View Article and Find Full Text PDF

Monoclonal antibody isolation directly from circulating human B cells is a powerful tool to delineate humoral responses to pathological conditions and discover antibody therapeutics. We have developed a platform aimed at improving the efficiencies of B cell selection and V gene recovery. Here, memory B cells are activated and amplified using Epstein-Barr virus infection, co-cultured with CHO-muCD40L cells, and then assessed by functional screenings.

View Article and Find Full Text PDF

The phosphatase laforin removes phosphate groups from glycogen during biosynthetic activity. Loss-of-function mutations in the gene encoding laforin is the predominant cause of Lafora disease, a fatal form of progressive myoclonic epilepsy. Here, we used hybrid structural methods to determine the molecular architecture of human laforin.

View Article and Find Full Text PDF

Sporozoite gliding motility and invasion of mosquito and vertebrate host cells in malaria is mediated by thrombospondin repeat anonymous protein (TRAP). Tandem von Willebrand factor A (VWA) and thrombospondin type I repeat (TSR) domains in TRAP connect through proline-rich stalk, transmembrane, and cytoplasmic domains to the parasite actin-dependent motility apparatus. We crystallized fragments containing the VWA and TSR domains from Plasmodium vivax and Plasmodium falciparum in different crystal lattices.

View Article and Find Full Text PDF

Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an "αTSR" domain.

View Article and Find Full Text PDF

The gene product of Vaccinia virus gene H1, VH1, is the first identified dual specificity phosphatase (DSP). The human genome encodes 38 different VH1-like DSPs, which include major regulators of signaling pathways, highly dysregulated in disease states. VH1 down-regulates cellular antiviral response by dephosphorylating activated STAT1 in the IFN-γ/STAT1 signaling pathway.

View Article and Find Full Text PDF

The Vaccinia virus H1 gene product, VH1, is a dual specificity phosphatase that down-regulates the cellular antiviral response by dephosphorylating STAT1. The crystal structure of VH1, determined at 1.32 A resolution, reveals a novel dimeric quaternary structure, which exposes two active sites spaced approximately 39 A away from each other.

View Article and Find Full Text PDF