Magnetic nanocomposite adsorbents are cost-effective, environmentally friendly, easy to use, and highly efficient at removing metals from large volumes of wastewater in a short time by using an external magnetic field. In this study, an FeO/NiO composite nanoadsorbent was prepared by varying the mass percent ratios of NiO (50, 40, 30, 20%), which are denoted FeO/50%NiO, FeO/40%NiO, FeO/30%NiO, and FeO/20%NiO, respectively, using plant extract as the template/capping agent and a simple mechanical grinding technique. The nanocomposites were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, nitrogen adsorption, and ζ-potential measurements.
View Article and Find Full Text PDFA new and unique alloy formulation design strategy has been developed in order to fabricate thin-layered metallic glasses (TLMGs) with superior fracture resistance and low coefficient of friction (COF) during the nanoscratching test. Due to the outstanding properties, TFMG could be applied for different uses, such as for surface coating, biomedical, bioimprinting, electronic devices, spacecraft, and railway, all of which need surface fracture resistance. The fabricated Zr-based metallic glass was prepared from Zr, Al, Cu, Ni, and Ag above 99.
View Article and Find Full Text PDFPhase change materials (PCMs) have emerged as promising materials for latent heat storage due to their characteristic solid-liquid phase transition behavior during the melting and cooling process. Among them, organic phase change materials are commonly used in latent heat storage. Herein, new phase change self-assembled micelles (PCSM) demonstrated thermal-based phase transition properties.
View Article and Find Full Text PDFThe new concept of modifying and tailoring the properties of existing two-dimensional (2D) nanomaterials by invoking the assembly of supramolecular networks upon association with a adenine-functionalized macromer (A-PPG) has significant potential to facilitate the development of highly water-dispersible few-layered 2D nanosheets. In this study, we propose that water-soluble A-PPG directly self-assembles into a long-period stacking-ordered lamellar structure over the surface of hexagonal boron nitride (BN) in aqueous solution, due to the efficient non-covalent interactions between A-PPG and BN nanosheets. The layer number of BN nanosheets can be easily tuned by altering the mass ratio of the A-PPG and BN blend, and the resulting exfoliated nanosheets also exhibit excellent temperature/pH-responsive behavior, biocompatibility and extremely high drug-loading capacity (up to 36.
View Article and Find Full Text PDFA simple and effective method for direct exfoliation of tungsten diselenide (WSe) into few-layered nanosheets has been successfully developed by employing a low molecular weight adenine-functionalized supramolecular polymer (A-PPG). In this study, we discover A-PPG can self-assemble into a long-range, ordered lamellar microstructure on the surface of WSe due to the efficient non-covalent interactions between A-PPG and WSe. Morphological and light scattering studies confirmed the dynamic self-assembly behavior of A-PPG has the capacity to efficiently manipulate the transition between contractile and extended lamellar microstructures on the surface of metallic 1T-phase and semiconducting 2H-phase WSe nanosheets, respectively.
View Article and Find Full Text PDF