An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMining the antibody repertoire of plasma cells and plasmablasts could enable the discovery of useful antibodies for therapeutic or research purposes. We present a method for high-throughput, single-cell screening of IgG-secreting primary cells to characterize antibody binding to soluble and membrane-bound antigens. CelliGO is a droplet microfluidics system that combines high-throughput screening for IgG activity, using fluorescence-based in-droplet single-cell bioassays, with sequencing of paired antibody V genes, using in-droplet single-cell barcoded reverse transcription.
View Article and Find Full Text PDFAnti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction.
View Article and Find Full Text PDFModulation of chromatin structure via histone modification is a major epigenetic mechanism and regulator of gene expression. However, the contribution of chromatin features to tumor heterogeneity and evolution remains unknown. Here we describe a high-throughput droplet microfluidics platform to profile chromatin landscapes of thousands of cells at single-cell resolution.
View Article and Find Full Text PDF