Alterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks.
View Article and Find Full Text PDFThe key atherosclerotic TMAO originates from the initial gut microbial conversion of -carnitine and other dietary compounds into TMA. Developing therapeutic strategies to block gut microbial TMA production needs a detailed understanding of the different production mechanisms and their relative contributions. Recently, we identified a two-step anaerobic pathway for TMA production from -carnitine through initial conversion by some microbes into the intermediate γBB which is then metabolized by other microbes into TMA.
View Article and Find Full Text PDFserovar Typhimurium is a leading cause of gastroenteritis worldwide and a deadly pathogen in children, immunocompromised patients, and the elderly. induces innate immune responses through the NLRC4 inflammasome, which has been demonstrated to have distinct roles during systemic and mucosal detections of flagellin and non-flagellin molecules. We hypothesized that NLRC4 recognition of flagellin is the dominant protective pathway during infection.
View Article and Find Full Text PDFThe gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold.
View Article and Find Full Text PDFRecent studies show gut microbiota-dependent metabolism of dietary phenylalanine into phenylacetic acid (PAA) is critical in phenylacetylglutamine (PAGln) production, a metabolite linked to atherosclerotic cardiovascular disease (ASCVD). Accordingly, microbial enzymes involved in this transformation are of interest. Using genetic manipulation in selected microbes and monocolonization experiments in gnotobiotic mice, we identify two distinct gut microbial pathways for PAA formation; one is catalyzed by phenylpyruvate:ferredoxin oxidoreductase (PPFOR) and the other by phenylpyruvate decarboxylase (PPDC).
View Article and Find Full Text PDFBackground: The gingival epithelium protects periodontal tissues and the alveolar bone by maintaining a steady state of regulated inflammatory surveillance, also known as healthy homeostasis. Accordingly, the repertoire of receptors present within the gingival epithelium showcases its ability to recognize microbial colonization and contribute to bacterial sensing. Macrophage migration inhibitory factor (MIF) is one of many cytokines that are expressed in this protective state and is involved in neutrophil regulation.
View Article and Find Full Text PDFThe heightened cardiovascular disease (CVD) risk observed among omnivores is thought to be linked, in part, to gut microbiota-dependent generation of trimethylamine-N-oxide (TMAO) from L-carnitine, a nutrient abundant in red meat. Gut microbial transformation of L-carnitine into trimethylamine (TMA), the precursor of TMAO, occurs via the intermediate γ-butyrobetaine (γBB). However, the interrelationship of γBB, red meat ingestion and CVD risks, as well as the gut microbial genes responsible for the transformation of γBB to TMA, are unclear.
View Article and Find Full Text PDFClinical studies have demonstrated associations between circulating levels of the gut-microbiota-derived metabolite trimethylamine-N-oxide (TMAO) and stroke incident risk. However, a causal role of gut microbes in stroke has not yet been demonstrated. Herein we show that gut microbes, through dietary choline and TMAO generation, directly impact cerebral infarct size and adverse outcomes following stroke.
View Article and Find Full Text PDFToll-Like Receptor (TLR) 4, the LPS receptor, plays a central role in the control of leptospirosis and absence of TLR4 results in lethal infection in mice. Because human TLR4 does not sense the atypical leptospiral-LPS, we hypothesized that TLR4/MD-2 humanized transgenic mice (huTLR4) may be more susceptible to leptospirosis than wild-type mice, and thus may constitute a model of acute human leptospirosis. We infected huTLR4 mice, which express human TLR4 but not murine TLR4, with a high dose of serovar Copenhageni FioCruz () in comparison to C57BL/6J wild-type (WT) and, as a control, a congenic strain in which the coding sequences are deleted (muTLR4).
View Article and Find Full Text PDFImmune evasion through membrane remodeling is a hallmark of pathogenesis. remodels its membrane during its life cycle as it alternates between mammalian hosts (37 °C) and ambient (21 °C to 26 °C) temperatures of the arthropod transmission vector or external environment. This shift in growth temperature induces changes in number and length of acyl groups on the lipid A portion of lipopolysaccharide (LPS) for the enteric pathogens () and (), as well as the causative agent of plague, ().
View Article and Find Full Text PDFPatients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastrointestinal (GI) disease, including GI inflammation and nutrient malabsorption. However, whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in CF, or whether CF-associated dysbiosis augments GI disease was not clear.
View Article and Find Full Text PDFThe human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism.
View Article and Find Full Text PDFHuman TLR4 (hTLR4) and mouse TLR4 molecules respond differently to hypo-acylated LPS. The LPS of is hypo-acylated and heavily glycosylated and causes a minimal response by human cells. Thus, we hypothesized that mice expressing hTLR4 molecules would be more susceptible to infection.
View Article and Find Full Text PDFBackground: Oral gingival tissue, especially the junctional epithelium (JE), is constantly exposed to sub-gingival plaque. A key component of gingival health is the regulation of the number of neutrophils that migrate into the gingival crevice to counteract its harmful effects. This report investigates the contribution of innate defense receptors, Toll-like receptor (TLR)2, TLR4, and both (TLR2/4) to the maintenance of neutrophil homeostasis in the JE.
View Article and Find Full Text PDFAm J Respir Crit Care Med
May 2018
To address the role of Toll-like receptor 4 (TLR4) single nucleotide polymorphisms (SNP) in lipopolysaccharide (LPS) recognition, we generated mice that differed only in the sequence of TLR4. We used a bacterial artificial chromosome (BAC) transgenic approach and TLR4/MD-2 knockout mice to specifically examine the role of human TLR4 variants in recognition of LPS. Using in vitro and in vivo assays we found that the expression level rather than the sequence of TLR4 played a larger role in recognition of LPS, especially hypoacylated LPS.
View Article and Find Full Text PDFThe best-characterized Toll-like receptor 4 (TLR4) ligands are lipopolysaccharide (LPS) and its chemically modified and detoxified variant, monophosphoryl lipid A (MPL). Although both molecules are active for human TLR4, they demonstrate a potency preference for mouse TLR4 based on data from transfected cell lines and primary cells of both species. After a high throughput screening process of small molecule libraries, we have discovered a new class of TLR4 agonist with a species preference profile differing from MPL.
View Article and Find Full Text PDFPathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body's iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins.
View Article and Find Full Text PDFGerm-free mice are used to examine questions about the role of the gut microbiota in development of diseases. Generally these animals are maintained in semi-rigid or flexible-film isolators to ensure their continued sterility or, if colonized with specific microbiota, to ensure that no new species are introduced. Here, we describe the use of a caging system in which individual cages are hermetically sealed and have their own filtered positive airflow.
View Article and Find Full Text PDFLipid A in LPS activates innate immunity through the Toll-like receptor 4 (TLR4)-MD-2 complex on host cells. Variation in lipid A has significant consequences for TLR4 activation and thus may be a means by which Gram-negative bacteria modulate host immunity. However, although even minor changes in lipid A structure have been shown to affect downstream immune responses, the mechanism by which the TLR4-MD-2 receptor complex recognizes these changes is not well understood.
View Article and Find Full Text PDFThe lysosomal membrane transporter, Nramp1, plays a key role in innate immunity and resistance to infection with intracellular pathogens such as non-typhoidal Salmonella (NTS). NTS-susceptible C57BL/6 (B6) mice, which express the mutant Nramp1D169 allele, are unable to control acute infection with Salmonella enterica serovar Typhimurium following intraperitoneal or oral inoculation. Introducing functional Nramp1G169 into the B6 host background, either by constructing a congenic strain carrying Nramp1G169 from resistant A/J mice (Nramp-Cg) or overexpressing Nramp1G169 from a transgene (Nramp-Tg), conferred equivalent protection against acute Salmonella infection.
View Article and Find Full Text PDFBurkholderia pseudomallei causes the tropical infection melioidosis. Pneumonia is a common manifestation of melioidosis and is associated with high mortality. Understanding the key elements of host defense is essential to developing new therapeutics for melioidosis.
View Article and Find Full Text PDFA humanized TLR7/TLR8 transgenic mouse line was engineered for studies using TLR7/8 ligands as vaccine adjuvants. The mice developed a spontaneous immune-mediated phenotype prior to six months of age characterized by runting, lethargy, blepharitis, and corneal ulceration. Histological examination revealed a marked, multisystemic histiocytic infiltrate that effaced normal architecture.
View Article and Find Full Text PDFSalmonella enterica serovar Typhimurium is a flagellated bacterium and one of the leading causes of gastroenteritis in humans. Bacterial flagellin is required for motility and also a prime target of the innate immune system. Innate immune recognition of flagellin is mediated by at least two independent pathways, TLR5 and Naip5-Naip6/NlrC4/Caspase-1.
View Article and Find Full Text PDF