Publications by authors named "Adelina Munteanu"

There is relevant evidence concerning the involvement of endothelial progenitor cells in neovascularization and wound healing. In this study we investigated the effects of sevoflurane, a volatile anesthetic with proven cardioprotective virtues, on the mobilization of bone marrow mononuclear cells with endothelial progenitor markers (CD 34+, flk-1 +), an event that may account for the protective effects of delayed anesthetic preconditioning. Male Wistar rats were treated with a mixture of air and sevoflurane (1 MAC) in cycles of 5 minutes, alternating with 5-minutes wash-out periods (the preconditioned group), or ventilated for 30 minutes with room air (control group).

View Article and Find Full Text PDF

Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled alpha-tocopherol to mitochondria in the same order of magnitude as the human alpha-tocopherol transfer protein (alpha-TTP).

View Article and Find Full Text PDF

In THP-1 monocytes, cellular proteasome inhibition by ritonavir or ALLN is associated with increased production of oxidative stress. Both compounds produced comparable amounts of oxidative stress; however, normalization by alpha-tocopherol occurred solely after inhibition by ritonavir, and not by ALLN. Similar to that, alpha-tocopherol could normalize the reduced formation of 3-nitrotyrosine-modified proteins only after ritonavir treatment.

View Article and Find Full Text PDF

Reentry is a mechanism underlying numerous cardiac arrhythmias. During reentry, head-tail interactions of the action potential can cause cycle length (CL) oscillations and affect the stability of reentry. We developed a method based on a difference-delay equation to determine the slopes of the action potential duration and conduction velocity restitution functions, known to be major determinants of reentrant arrhythmogenesis, from the spatial period P and the decay length D of damped CL oscillations.

View Article and Find Full Text PDF

Randomised clinical trials and epidemiologic studies addressing the preventive effects of vitamin E supplementation against cardiovascular disease reported both positive and negative effects, and recent meta-analyses of the clinical studies were rather disappointing. In contrast to that, many animal studies clearly show a preventive action of vitamin E in several experimental settings, which can be explained by the molecular and cellular effects of vitamin E observed in cell cultures. This review is focusing on the molecular effects of vitamin E on the cells playing a role during atherosclerosis, in particular on the endothelial cells, vascular smooth muscle cells, monocytes/macrophages, T cells, and mast cells.

View Article and Find Full Text PDF

Slow conduction and unidirectional conduction block (UCB) are key mechanisms of reentry. Following abrupt changes in heart rate, dynamic changes of conduction velocity (CV) and structurally determined UCB may critically influence arrhythmogenesis. Using patterned cultures of neonatal rat ventricular myocytes grown on microelectrode arrays, we investigated the dynamics of CV in linear strands and the behavior of UCB in tissue expansions following an abrupt decrease in pacing cycle length (CL).

View Article and Find Full Text PDF

Vitamin E deficiency increases expression of the CD36 scavenger receptor, suggesting specific molecular mechanisms and signaling pathways modulated by alpha-tocopherol. We show here that alpha-tocopherol down-regulated CD36 expression (mRNA and protein) in oxidized low density lipoprotein (oxLDL)-stimulated THP-1 monocytes, but not in unstimulated cells. Furthermore, alpha-tocopherol treatment of monocytes led to reduction of fluorescent oxLDL-3,3'-dioctadecyloxacarbocyanine perchlorate binding and uptake.

View Article and Find Full Text PDF

Prolonged treatments with inhibitors of human immunodeficiency(HIV)-encoded protease (ARPI) have been reported to induce early atherosclerotic events. Our in vitro study indicates that alpha-tocopherol may prevent drug-induced premature atherosclerosis since it interferes with CD36 scavenger receptor over-expression induced by ritonavir in monocytes. The mechanism of CD36 upregulation by ritonavir involves inhibition of the ubiquitin-proteasome system and alpha-tocopherol is able to normalize proteasome activity.

View Article and Find Full Text PDF

Therapies with antiretroviral protease inhibitors (ARPI) are correlated with a higher risk for dyslipidemia, hypercholesterolemia, and atherosclerosis. The original aim of this study was to establish whether alpha-tocopherol can reduce CD36 scavenger receptor overexpression occurring after treatment of monocytes with the ARPI ritonavir. We show here that treatment of THP-1 monocytes with ritonavir increases total protein and surface expression of CD36; however, only weak changes are observed at the mRNA level, suggesting that CD36 overexpression occurs mainly at the posttranscriptional level.

View Article and Find Full Text PDF

The effect of a mixture of alpha-tocopheryl phosphate plus di-alpha-tocopheryl phosphate (TPm) was studied in vitro on two cell lines, RASMC (from rat aortic smooth muscle) and human THP-1 monocytic leukemia cells. Inhibition of cell proliferation by TPm was shown in both lines and occurred with TPm at concentrations lower than those at which alpha-tocopherol was equally inhibitory. TPm led in nonstimulated THP-1 cells to inhibition of CD36 mRNA and protein expression, to inhibition of oxidized low-density lipoprotein surface binding and oxLDL uptake.

View Article and Find Full Text PDF

alpha-Tocopherol modulates two major signal transduction pathways centered on protein kinase C and phosphatidylinositol 3-kinase. Changes in the activity of these key kinases are associated with changes in cell proliferation, platelet aggregation, and NADPH-oxidase activation. Several genes are also regulated by tocopherols partly because of the effects of tocopherol on these two kinases, but also independently of them.

View Article and Find Full Text PDF

Several genes are regulated by tocopherols which can be categorized, based on their function, into five groups: genes that are involved in the uptake and degradation of tocopherols (Group 1) include alpha-tocopherol transfer protein (alpha-TTP) and cytochrome P450 (CYP3A); genes that are associated with lipid uptake and atherosclerosis (Group 2) include CD36, SR-BI and SR-AI/II. Genes that modulate the expression of extracellular proteins (Group 3) include tropomyosin, collagen(alpha1), MMP-1, MMP-19 and connective tissue growth factor (CTGF). Genes that are related to inflammation, cell adhesion and platelet aggregation (Group 4) include E-selectin, ICAM-1, integrins, glycoprotein IIb, II-2, IL-4 and IL-beta.

View Article and Find Full Text PDF

The effect of a mixture of alpha-tocopheryl phosphate and di-alpha-tocopheryl phosphate (TPm) was studied in vitro on two cell lines, RASMC (from rat aortic smooth muscle) and human THP-1 monocytic leukaemia cells. Inhibition of cell proliferation by TPm was shown in both lines and occurred with TPm at concentrations lower than those at which alpha-tocopherol was equally inhibitory. TPm led in non-stimulated THP-1 cells to inhibition of CD36 mRNA and protein expression, to inhibition of oxidized low density lipoprotein surface binding and oxLDL uptake.

View Article and Find Full Text PDF

Atherosclerosis and its complications such as coronary heart disease, myocardial infarction and stroke are the leading causes of death in the developed world. High blood pressure, diabetes, smoking and a diet high in cholesterol and lipids clearly increase the likelihood of premature atherosclerosis, albeit other factors, such as the individual genetic makeup, may play an additional role. Several epidemiological studies and intervention trials have been performed with vitamin E, and some of them showed that it prevents atherosclerosis.

View Article and Find Full Text PDF