Publications by authors named "Adeleh Gholipour-Kanani"

Hybrid structures made of natural-synthetic polymers have been interested due to high biological features combining promising physical-mechanical properties. In this research, a hybrid dressing consisting of a silk fibroin (SF)/polyvinyl alcohol (PVA) nanofibers and sodium alginate (SA)/gum tragacanth (GT) hydrogel incorporating cardamom extract as an antibacterial agent was prepared. Accordingly, SF was extracted from cocoons followed by electrospinning in blend form with PVA (SF/PVA ratio: 1:1) under the voltage of 18 kV and the distances of 15 cm.

View Article and Find Full Text PDF

Nowadays, nanofibrous structures based on organic and inorganic materials are considered a drug delivery system for the controlled release of antibiotics and other antibacterial agents. The main goal of this research is a combination of the special properties of nanofibrous structure and Mupirocin-loaded Layered double hydroxide (LDH) to obtain a dual-carrier drug release system to provide long term antibacterial properties in wound healing process. Regards, unloaded layered double hydroxide (LDH) and Mupirocin-loaded LDH, which were synthesized by co-precipitation method, were added to Polyvinyl alcohol (PVA) solution in different mass ratio and electrospun using different processing conditions.

View Article and Find Full Text PDF

Considering the great potential of egg yolk oil (EYO) in management of burn wounds and superb biological properties of polycaprolactone (PCL) and polyethylene glycol (PEG), hereby, a PCL-PEG-EYO scaffold was developed by electrospinning method for burn healing. The physico-chemical characterizations were performed using SEM, FTIR and contact angle tests. The biological properties of the fabricated scaffolds were evaluated by antibacterial test, in vitro cell culturing, MTT assay and in vivo experiments.

View Article and Find Full Text PDF

Poly (ɛ-caprolactone)-chitosan-poly (vinyl alcohol) (PCL: Cs: PVA) nanofibrous blend scaffolds were known as useful materials for skin wound healing and would help the healing process about 50% faster at the final time point. From the previous studies by the authors, PCL: Cs: PVA (in 2: 1: 1.5 mass ratio) nanofibres showed high efficacy in healing on rat models.

View Article and Find Full Text PDF

Chitosan-poly (vinyl alcohol) (Cs: PVA) (2:3) and poly (caprolactone)-chitosan-poly (vinyl alcohol) (PCL: Cs: PVA) (2:1:1.5) nanofibrous blend scaffolds were fabricated using the electrospinning technique in the authors' previous studies. The results of the previous studies confirmed the high biological properties of the scaffolds and their ability in healing of burn and excision wounds on rat model.

View Article and Find Full Text PDF

Natural-synthetic blend nanofibres have recently attracted more interest because of the ability of achieving desirable properties. Poly(ε-caprolactone) (PCL)-chitosan (Cs)-poly(vinyl alcohol) (PVA) blend nanofibrous scaffolds were electrospun in 2:1:1.33 mass ratio of PCL:Cs:PVA.

View Article and Find Full Text PDF