Introduction: Cardiometabolic diseases, a major global health concern, stem from complex interactions of lifestyle, genetics, and biochemical markers. While extensive research has revealed strong associations between various risk factors and these diseases, latent confounding and limited causal discovery methods hinder understanding of their causal relationships, essential for mechanistic insights and developing effective prevention and intervention strategies.
Methods: We introduce anchorFCI, a novel adaptation of the conservative Really Fast Causal Inference (RFCI) algorithm, designed to enhance robustness and discovery power in causal learning by strategically selecting and integrating reliable anchor variables from a set of variables known not to be caused by the variables of interest.
Background And Aims: To investigate associations between Single Nucleotide Polymorphisms (SNPs) in the TAS1R and TAS2R taste receptors and diet quality, intake of alcohol, added sugar, and fat, using linear regression and machine learning techniques in a highly admixed population.
Methods: In the ISA-Capital health survey, 901 individuals were interviewed and had socioeconomic, demographic, health characteristics, along with dietary information obtained through two 24-h recalls. Data on 12 components related to food groups, nutrients, and calories was combined into a diet quality score (BHEI-R).
Graphs/networks have become a powerful analytical approach for data modeling. Besides, with the advances in sensor technology, dynamic time-evolving data have become more common. In this context, one point of interest is a better understanding of the information flow within and between networks.
View Article and Find Full Text PDFMany challenging problems in biomedical research rely on understanding how variables are associated with each other and influenced by genetic and environmental factors. Probabilistic graphical models (PGMs) are widely acknowledged as a very natural and formal language to describe relationships among variables and have been extensively used for studying complex diseases and traits. In this work, we propose methods that leverage observational Gaussian family data for learning a decomposition of undirected and directed acyclic PGMs according to the influence of genetic and environmental factors.
View Article and Find Full Text PDFFaced with the lack of reliability and reproducibility in omics studies, more careful and robust methods are needed to overcome the existing challenges in the multi-omics analysis. In conventional omics data analysis, signal intensity values (denoted by and values) are estimated neglecting pixel-level uncertainties, which may reflect noise and systematic artifacts. For example, intensity values from two-color microarray data are estimated by taking the mean or median of the pixel intensities within the spot and then subjected to a within-slide normalization by LOWESS.
View Article and Find Full Text PDFBackground: Blood pressure (BP) is associated with carotid intima-media thickness (CIMT), but few studies have explored the association between BP variability and CIMT. We aimed to investigate this association in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) baseline.
Methods: We analyzed data from 7,215 participants (56.