Four years after the EAT-Lancet landmark report, worldwide movements call for action to reorient food systems to healthy diets that respect planetary boundaries. Since dietary habits are inherently local and personal, any shift toward healthy and sustainable diets going against this identity will have an uphill road. Therefore, research should address the tension between the local and global nature of the biophysical (health, environment) and social dimensions (culture, economy).
View Article and Find Full Text PDFThe relation among the various causal factors of obesity is not well understood, and there remains a lack of viable data to advance integrated, systems models of its etiology. The collection of big data has begun to allow the exploration of causal associations between behavior, built environment, and obesity-relevant health outcomes. Here, the traditional epidemiologic and emerging big data approaches used in obesity research are compared, describing the research questions, needs, and outcomes of 3 broad research domains: eating behavior, social food environments, and the built environment.
View Article and Find Full Text PDFMalnutrition in an obese world was the fitting title of the 13th Federation of European Nutrition Societies (FENS) conference held in October 2019. Many individuals do not eat a healthy, well-balanced diet, and this is now understood to be a major driver of increased disease risk and illness. Moreover, both our current eating patterns and the food system as a whole are environmentally unsustainable, threatening the planetary systems we depend on for survival.
View Article and Find Full Text PDFNewborn neurons follow molecular cues to reach their final destination, but whether early life experience influences lamination remains largely unexplored. As light is among the first stimuli to reach the developing nervous system via intrinsically photosensitive retinal ganglion cells (ipRGCs), we asked whether ipRGCs could affect lamination in the developing mouse retina. We show here that ablation of ipRGCs causes cone photoreceptors to mislocalize at different apicobasal positions in the retina.
View Article and Find Full Text PDFPresynaptic terminals favor intermediate-conductance Ca(V)2.2 (N type) over high-conductance Ca(V)1 (L type) channels for single-channel, Ca(2+) nanodomain-triggered synaptic vesicle fusion. However, the standard Ca(V)1>Ca(V)2>Ca(V)3 conductance hierarchy is based on recordings using nonphysiological divalent ion concentrations.
View Article and Find Full Text PDF