Publications by authors named "Adele Nicolas"

Background: Computational simulation of biological processes can be a valuable tool for accelerating biomedical research, but usually requires extensive domain knowledge and manual adaptation. Large language models (LLMs) such as GPT-4 have proven surprisingly successful for a wide range of tasks. This study provides proof-of-concept for the use of GPT-4 as a versatile simulator of biological systems.

View Article and Find Full Text PDF

Objective: Investigating the effect of ferroptosis in the tumour microenvironment to identify combinatory therapy for liver cancer treatment.

Design: Glutathione peroxidase 4 (GPx4), which is considered the master regulator of ferroptosis, was genetically altered in murine models for hepatocellular carcinoma (HCC) and colorectal cancer (CRC) to analyse the effect of ferroptosis on tumour cells and the immune tumour microenvironment. The findings served as foundation for the identification of additional targets for combine therapy with ferroptotic inducer in the treatment of HCC and liver metastasis.

View Article and Find Full Text PDF

Solid cancers exhibit a dynamic balance between cell death and proliferation ensuring continuous tumour maintenance and growth. Increasing evidence links enhanced cancer cell apoptosis to paracrine activation of cells in the tumour microenvironment initiating tissue repair programs that support tumour growth, yet the direct effects of dying cancer cells on neighbouring tumour epithelia and how this paracrine effect potentially contributes to therapy resistance are unclear. Here we demonstrate that chemotherapy-induced tumour cell death in patient-derived colorectal tumour organoids causes ATP release triggering P2X4 (also known as P2RX4) to mediate an mTOR-dependent pro-survival program in neighbouring cancer cells, which renders surviving tumour epithelia sensitive to mTOR inhibition.

View Article and Find Full Text PDF

T memory stem cells (T) display increased self-renewal and prolonged survival capabilities, thus preventing T cell exhaustion and promoting effective anti-tumor T cell responses. T cells can be expanded by Urolithin A (UA), which is produced by the commensal gut microbiome from foods rich in ellagitannins and is known to improve mitochondrial health. Oral UA administration to tumor-bearing mice conferred strong anti-tumor CD8 T cell immunity, whereas ex vivo UA pre-treated T cells displayed improved anti-tumor function upon adoptive cell transfer.

View Article and Find Full Text PDF

Radiobiology research in rectal cancer has been limited to cell lines, patient-derived organoids (PDOs), or xenografts. Here, we describe a protocol which recapitulates more efficiently the complex contributions of the tumor microenvironment. This approach establishes a preclinical mouse model of rectal cancer by intrarectal transplantation of genetically modified organoids into immunocompetent mice followed by precise image-guided radiotherapy (IGRT) of organoid-induced tumors.

View Article and Find Full Text PDF

Purpose: Recent advances in the treatment algorithm of locally advanced rectal cancer (LARC) have significantly improved complete response (CR) rates and disease-free survival (DFS), but therapy resistance, with its substantial impact on outcomes and survival, remains a major challenge. Our group has recently unraveled a critical role of interleukin-1α (IL-1α) signaling in activating inflammatory cancer-associated fibroblasts (iCAFs) and mediating radiation-induced senescence, extracellular matrix (ECM) accumulation, and ultimately therapy resistance. We here summarize the recently initiated ACO/ARO/AIO-21 phase I trial, testing the IL-1 receptor antagonist (IL-1 RA) anakinra in combination with fluoropyrimidine-based chemoradiotherapy (CRT) for advanced rectal cancer.

View Article and Find Full Text PDF

Standard cancer therapy targets tumor cells without considering possible damage on the tumor microenvironment that could impair therapy response. In rectal cancer patients we find that inflammatory cancer-associated fibroblasts (iCAFs) are associated with poor chemoradiotherapy response. Employing a murine rectal cancer model or patient-derived tumor organoids and primary stroma cells, we show that, upon irradiation, interleukin-1α (IL-1α) not only polarizes cancer-associated fibroblasts toward the inflammatory phenotype but also triggers oxidative DNA damage, thereby predisposing iCAFs to p53-mediated therapy-induced senescence, which in turn results in chemoradiotherapy resistance and disease progression.

View Article and Find Full Text PDF

Unlabelled: The activation and differentiation of cancer-associated fibroblasts (CAF) are involved in tumor progression. Here, we show that the tumor-promoting lipid mediator prostaglandin E2 (PGE2) plays a paradoxical role in CAF activation and tumor progression. Restricting PGE2 signaling via knockout of microsomal prostaglandin E synthase-1 (mPGES-1) in PyMT mice or of the prostanoid E receptor 3 (EP3) in CAFs stunted mammary carcinoma growth associated with strong CAF proliferation.

View Article and Find Full Text PDF

Tumor progression is recognized as a result of an evolving cross-talk between tumor cells and their surrounding nontransformed stroma. Although Wnt signaling has been intensively studied in colorectal cancer, it remains unclear whether activity in the tumor-associated stroma contributes to malignancy. To specifically interfere with stromal signals, we generated Wnt-independent tumor organoids that secrete the Wnt antagonist Sfrp1.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a mouse model (Trp53ΔIECAktE17K) that shows aggressive tumor behavior and reflects the human mesenchymal subtype of CRC (CMS4), which has the worst survival rates.
  • * Increased expression of NOTCH3 is linked to tumor severity in CRC, and targeting NOTCH3 with an antibody in the mouse model shows promise in reducing tumor spread, suggesting it as a potential treatment focus for CMS4 CRC patients.
View Article and Find Full Text PDF

Increased oxidative stress has been suggested to initiate and promote tumorigenesis by inducing DNA damage and to suppress tumor development by triggering apoptosis and senescence. The contribution of individual cell types in the tumor microenvironment to these contrasting effects remains poorly understood. We provide evidence that during intestinal tumorigenesis, myeloid cell-derived HO triggers genome-wide DNA mutations in intestinal epithelial cells to stimulate invasive growth.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: