Alzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD.
View Article and Find Full Text PDFBilirubin is one of the most frequently measured metabolites in medicine, yet its physiologic roles remain unclear. Bilirubin can act as an antioxidant in vitro, but whether its redox activity is physiologically relevant is unclear because many other antioxidants are far more abundant in vivo. Here, we report that depleting endogenous bilirubin renders mice hypersensitive to oxidative stress.
View Article and Find Full Text PDFGlutamate is the most abundant excitatory neurotransmitter, present at the bulk of cortical synapses, and participating in many physiologic and pathologic processes ranging from learning and memory to stroke. The tripeptide, glutathione, is one-third glutamate and present at up to low millimolar intracellular concentrations in brain, mediating antioxidant defenses and drug detoxification. Because of the substantial amounts of brain glutathione and its rapid turnover under homeostatic control, we hypothesized that glutathione is a relevant reservoir of glutamate and could influence synaptic excitability.
View Article and Find Full Text PDFATM drives DNA repair by phosphorylating the histone variant H2AX. While ATM mutations elicit prominent neurobehavioral phenotypes, neural roles for H2AX have been elusive. We report impaired motor learning and balance in H2AX-deficient mice.
View Article and Find Full Text PDFActivated immune cells undergo a metabolic switch to aerobic glycolysis akin to the Warburg effect, thereby presenting a potential therapeutic target in autoimmune disease. Dimethyl fumarate (DMF), a derivative of the Krebs cycle intermediate fumarate, is an immunomodulatory drug used to treat multiple sclerosis and psoriasis. Although its therapeutic mechanism remains uncertain, DMF covalently modifies cysteine residues in a process termed succination.
View Article and Find Full Text PDFRationale: Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored.
Objective: We have investigated the role of IPMK in regulating angiogenesis.
Methods And Results: Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models.
Inositol hexakisphosphate kinase 1 (IP6K1), which generates 5-diphosphoinositol pentakisphosphate (5-IP7), physiologically mediates numerous functions. We report that deletion leads to brain malformation and abnormalities of neuronal migration. IP6K1 physiologically associates with α-actinin and localizes to focal adhesions.
View Article and Find Full Text PDFUnlabelled: The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain.
View Article and Find Full Text PDFHuntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity.
View Article and Find Full Text PDFThe tumor suppressor protein p53 is a critical stress response transcription factor that induces the expression of genes leading to cell cycle arrest, apoptosis, and tumor suppression. We found that mammalian inositol polyphosphate multikinase (IPMK) stimulated p53-mediated transcription by binding to p53 and enhancing its acetylation by the acetyltransferase p300 independently of its inositol phosphate and lipid kinase activities. Genetic or RNA interference (RNAi)-mediated knockdown of IPMK resulted in decreased activation of p53, decreased recruitment of p53 and p300 to target gene promoters, abrogated transcription of p53 target genes, and enhanced cell viability.
View Article and Find Full Text PDFIncreases in S-nitrosylation and inactivation of the neuroprotective ubiquitin E3 ligase, parkin, in the brains of patients with Parkinson's disease are thought to be pathogenic and suggest a possible mechanism linking parkin to sporadic Parkinson's disease. Here we demonstrate that physiologic modification of parkin by hydrogen sulfide, termed sulfhydration, enhances its catalytic activity. Sulfhydration sites are identified by mass spectrometry analysis and are investigated by site-directed mutagenesis.
View Article and Find Full Text PDFmTOR complex 1 (mTORC1; mammalian target of rapamycin [mTOR] in complex with raptor) is a key regulator of protein synthesis and cell growth in response to nutrient amino acids. Here we report that inositol polyphosphate multikinase (IPMK), which possesses both inositol phosphate kinase and lipid kinase activities, regulates amino acid signaling to mTORC1. This regulation is independent of IPMK's catalytic function, instead reflecting its binding with mTOR and raptor, which maintains the mTOR-raptor association.
View Article and Find Full Text PDFThe inositol pyrophosphate, diphosphoinositol pentakisphosphate, regulates p53 and protein kinase Akt signaling, and its aberrant increase in cells has been implicated in apoptosis and insulin resistance. Inositol hexakisphosphate kinase-2 (IP6K2), one of the major inositol pyrophosphate synthesizing enzymes, mediates p53-linked apoptotic cell death. Casein kinase-2 (CK2) promotes cell survival and is upregulated in tumors.
View Article and Find Full Text PDFThe inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), formed by a family of three inositol hexakisphosphate kinases (IP6Ks), modulates diverse cellular activities. We now report that IP7 is a physiologic inhibitor of Akt, a serine/threonine kinase that regulates glucose homeostasis and protein translation, respectively, via the GSK3β and mTOR pathways. Thus, Akt and mTOR signaling are dramatically augmented and GSK3β signaling reduced in skeletal muscle, white adipose tissue, and liver of mice with targeted deletion of IP6K1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
Inositol pyrophosphates have been implicated in numerous biological processes. Inositol hexakisphosphate kinase-2 (IP6K2), which generates the inositol pyrophosphate, diphosphoinositol pentakisphosphate (IP7), influences apoptotic cell death. The tumor suppressor p53 responds to genotoxic stress by engaging a transcriptional program leading to cell-cycle arrest or apoptosis.
View Article and Find Full Text PDFS-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2008
Heat-shock proteins (HSPs) are abundant, inducible proteins best known for their ability to maintain the conformation of proteins and to refold damaged proteins. Some HSPs, especially HSP90, can be antiapoptotic and the targets of anticancer drugs. Inositol hexakisphosphate kinase-2 (IP6K2), one of a family of enzymes generating the inositol pyrophosphate IP7 [diphosphoinositol pentakisphosphate (5-PP-IP5)], mediates apoptosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2007
In a previous study, we showed that the inositol pyrophosphate diphosphoinositol pentakisphosphate (IP(7)) physiologically phosphorylates mammalian and yeast proteins. We now report that this phosphate transfer reflects pyrophosphorylation. Thus, proteins must be prephosphorylated by ATP to prime them for IP(7) phosphorylation.
View Article and Find Full Text PDFThe atypical antipsychotic drugs (AAPDs) have markedly enhanced the treatment of schizophrenias but their use has been hindered by the major weight gain elicited by some AAPDs. We report that orexigenic AAPDs potently and selectively activate hypothalamic AMP-kinase, an action abolished in mice with deletion of histamine H1 receptors. These findings may afford a means of developing more effective therapeutic agents and provide insight into the hypothalamic regulation of food intake.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2005
Phosphatidylinositol 3,4,5-trisphosphate is a major intracellular messenger molecule thought to be formed almost exclusively by cytosolic, wortmannin-inhibited phosphoinositide 3-kinase family members. Inositol polyphosphate multikinase was identified as an enzyme that generates a series of water-soluble inositol phosphates. We now report the robust, physiologic, and evolutionarily conserved phosphoinositide 3-kinase activity of inositol polyphosphate multikinase, which is localized to nuclei and unaffected by wortmannin.
View Article and Find Full Text PDFInositol pyrophosphates physiologically regulate vesicular endocytosis, ribosomal disposition, and directly phosphorylate proteins. Here we demonstrate roles in cell death and regulation of telomere length. Lethal actions of wortmannin and caffeine are selectively abolished in yeast mutants that cannot synthesize inositol pyrophosphates.
View Article and Find Full Text PDFThe inositol pyrophosphates IP7 and IP8 contain highly energetic pyrophosphate bonds. Although implicated in various biologic functions, their molecular sites of action have not been clarified. Using radiolabeled IP7, we detected phosphorylation of multiple eukaryotic proteins.
View Article and Find Full Text PDF