Production of psychrophilic enzymes in the commonly used mesophilic expression systems is hampered by low intrinsic stability of the recombinant enzymes at the optimal host growth temperatures. Unless strategies for low-temperature expression are advanced, research on psychrophilic enzymes may end up being biased toward those that can be stably produced in commonly used mesophilic host systems. Two main strategies are currently being explored for the development of low-temperature expression in bacterial hosts: (i) low-temperature adaption of existing mesophilic expression systems, and (ii) development of new psychrophilic hosts.
View Article and Find Full Text PDFBackground: Heterologous expression of psychrophilic enzymes in E. coli is particularly challenging due to their intrinsic instability. The low stability is regarded as a consequence of adaptation that allow them to function at low temperatures.
View Article and Find Full Text PDFHere we report the 8 Mb high quality draft genome of Streptomyces sp. strain AW19M42, together with specific properties of the organism and the generation, annotation and analysis of its genome sequence. The genome encodes 7,727 putative open reading frames, of which 6,400 could be assigned with COG categories.
View Article and Find Full Text PDF