Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of 'Dusa' avocado rootstock to different levels of water stress.
View Article and Find Full Text PDFRosellinia necatrix is the causal agent of avocado white root rot (WRR). Control of this soil-borne disease is difficult, and the use of tolerant rootstocks may present an effective method to lessen its impact. To date, no studies on the molecular mechanisms regulating the avocado plant response towards this pathogen have been undertaken.
View Article and Find Full Text PDFMany type III-secreted effectors suppress plant defenses, but can also activate effector-triggered immunity (ETI) in resistant backgrounds. ETI suppression has been shown for a number of type III effectors (T3Es) and ETI-suppressing effectors are considered part of the arms race model for the co-evolution of bacterial virulence and plant defense. However, ETI suppression activities have been shown mostly between effectors not being naturally expressed within the same strain.
View Article and Find Full Text PDFSeveral reports have recently contributed to determine the effector inventory of the sequenced strain Pseudomonas syringae pv. phaseolicola (Pph) 1448a. However, the contribution to virulence of most of these effectors remains to be established.
View Article and Find Full Text PDFIn Pseudomonas syringae, the type III secretion system (T3SS) is essential for disease in compatible hosts and for eliciting the hypersensitive response in incompatible hosts. P. syringae pathovars secrete a variable number of type III effectors that form their secretomes.
View Article and Find Full Text PDFMixed infections have been broadly applied to the study of bacterial pathogens in animals. However, the application of mixed infection-based methods in plant pathogens has been very limited. An important factor for this limitation is the different dynamics that mixed infections have been reported to show in the different types of models.
View Article and Find Full Text PDF