Knowledge of texture and residual stresses in tungsten heavy pseudoalloys is substantial for the microstructure optimization. These characteristics were determined in cold and warm rotary swaged W/NiCo composite with help of neutron diffraction. The results were discussed in view of the observed microstructure and mechanical properties.
View Article and Find Full Text PDFThis contribution characterizes the performance of a DESI 11 high-speed disintegrator working on the principle of a pin mill with two opposite counter-rotating rotors. As the ground material, batches of Portland cement featuring 6-7 Mohs scale hardness and containing relatively hard and abrasive compounds with the specific surface areas ranging from 200 to 500 m/kg, with the step of 50 m/kg, were used. The character of the ground particles was assessed via scanning electron microscopy and measurement of the absolute/relative increase in their specific surface areas.
View Article and Find Full Text PDFThe methods of severe plastic deformation (SPD) have gained attention within the last decades primarily owing to their ability to substantially refine the grains within metallic materials and, therefore, significantly enhance the properties. Among one of the most efficient SPD methods is the equal channel angular pressing (ECAP)-based twist channel angular pressing (TCAP) method, combining channel twist and channel bending within a single die. This unique die affects the processed material with three independent strain paths during a single pass, which supports the development of substructure and efficiently refines the grains.
View Article and Find Full Text PDFThis study focuses on numerical prediction and experimental investigation of deformation behaviour of a tungsten heavy alloy prepared via powder metallurgy and subsequent cold (20 °C) and warm (900 °C) rotary swaging. Special emphasis was placed on the prediction of the effects of the applied induction heating. As shown by the results, the predicted material behaviour was in good correlation with the real experiment.
View Article and Find Full Text PDFMaterials (Basel)
December 2019
High entropy alloys (HEA) have been one of the most attractive groups of materials for researchers in the last several years. Since HEAs are potential candidates for many (e.g.
View Article and Find Full Text PDFBoth copper and aluminum are widely applicable throughout a variety of industrial and commercial branches, however, joining them in a composite provides the possibility of combining all their advantageous properties in one material. This study investigates uniquely sequenced copper-aluminum clad composite wires, fabricated via rotary swaging technology. The composites were processed at 20 °C and 250 °C to a diameter of 5 mm.
View Article and Find Full Text PDF