Publications by authors named "Adela Calvente"

Meiotic recombination occurs as a programmed event that initiates by the formation of DNA double-strand breaks (DSBs) that give rise to the formation of crossovers that are observed as chiasmata. Chiasmata are essential for the accurate chromosome segregation and the generation of new combinations of parental alleles. Some treatments that provoke exogenous DSBs also lead to alterations in the recombination pattern of some species in which full homologous synapsis is achieved at pachytene.

View Article and Find Full Text PDF

We have analyzed in a true bug, Graphosoma italicum (Pentatomidae, Hemiptera), the temporal and functional relationships between recombination events, synapsis progression, and SMC1alpha and SMC3 cohesin axis maturation throughout the male first meiotic prophase. The localization of the histone variant histone H3 trimethylated at lysine 9 at chromosome ends has allowed us to determine the association of these heterochromatic domains through prophase I stages. Results highlighted that cohesins provide to be good markers for synapsis progression since the formation, morphology, and development of the SMC1alpha and SMC3 cohesin axes resemble the synaptonemal complex dynamics and, also, that in this species the initiation of recombination precedes synapsis.

View Article and Find Full Text PDF

In most eutherian mammals, sex chromosomes synapse and recombine during male meiosis in a small region called pseudoautosomal region. However in some species sex chromosomes do not synapse, and how these chromosomes manage to ensure their proper segregation is under discussion. Here we present a study of the meiotic structure and behavior of sex chromosomes in one of these species, the Mongolian gerbil (Meriones unguiculatus).

View Article and Find Full Text PDF

Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis.

View Article and Find Full Text PDF

During first meiotic prophase, homologous chromosomes are held together by the synaptonemal complex, a tripartite proteinaceous structure that extends along the entire length of meiotic bivalents. While this feature is applicable for autosomes, sex chromosomes often escape from this rule. Many species present sex chromosomes that differ between them in their morphology, length, and gene content.

View Article and Find Full Text PDF

The relationship between meiotic recombination events and different patterns of pairing and synapsis has been analysed in prophase I spermatocytes of the grasshopper Stethophyma grossum, which exhibit very unusual meiotic characteristics, namely (1) the three shortest bivalents achieve full synapsis and do not show chiasma localisation; (2) the remaining eight bivalents show restricted synapsis and proximal chiasma localisation, and (3) the X chromosome remains unsynapsed. We have studied by means of immunofluorescence the localisation of the phosphorylated histone H2AX (gamma-H2AX), which marks the sites of double-strand breaks; the SMC3 cohesin subunit, which is thought to have a close relationship to the development of the axial element (a synaptonemal complex component); and the recombinase RAD51. We observed a marked nuclear polarization of both the maturation of SMC3 cohesin axis and the ulterior appearance of gamma-H2AX and RAD51 foci, these being exclusively restricted to those chromosomal regions that first form cohesin axis stretches.

View Article and Find Full Text PDF

The temporal and functional relationships between DNA events of meiotic recombination and synaptonemal complex formation are a matter of discussion within the meiotic field. To analyse this subject in grasshoppers, organisms that have been considered as models for meiotic studies for many years, we have studied the localization of phosphorylated histone H2AX (gamma-H2AX), which marks the sites of double-strand breaks (DSBs), in combination with localization of cohesin SMC3 and recombinase Rad51. We show that the loss of gamma-H2AX staining is spatially and temporally linked to synapsis, and that in grasshoppers the initiation of recombination, produced as a consequence of DSB formation, precedes synapsis.

View Article and Find Full Text PDF