Tranexamic acid (TXA) is a synthetic antifibrinolytic agent that inhibits plasminogen activation, thereby reducing bleeding. The aim of this systematic review was to investigate its role in aneurysmal subarachnoid hemorrhage (SAH)-a condition indicated by bleeding between two layers of brain tissue-to stop rebleeding and improve patient outcomes. We conducted a systematic review and meta-analysis of randomized controlled trials from 1981 to 2024, focusing on the efficacy and safety of TXA in treating aneurysmal SAH (PROSPERO registration: CRD42024504834).
View Article and Find Full Text PDFDespite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood-brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB's integrity and permeability.
View Article and Find Full Text PDFBackground: Tumor Treating Fields (TTFields) therapy is a non-invasive, loco-regional, anti-mitotic treatment modality that targets rapidly dividing cancerous cells, utilizing low intensity, alternating electric fields at cancer-cell-type specific frequencies. TTFields therapy is approved for the treatment of newly diagnosed and recurrent glioblastoma (GBM) in the US, Europe, Israel, Japan, and China. The favorable safety profile of TTFields in patients with GBM is partially attributed to the low rate of mitotic events in normal, quiescent brain cells.
View Article and Find Full Text PDFSpectrally encoded endoscopy (SEE) is an ultra-miniature endoscopy technology that encodes each spatial location on the sample with a different wavelength. One challenge in SEE is achieving color imaging with a small probe. We present a novel SEE probe that is capable of conducting real-time RGB imaging using three diffraction orders (6th order diffraction of the blue spectrum, 5th of green, and 4th of red).
View Article and Find Full Text PDFLasers Surg Med
November 2019
Background And Objective: Spectrally encoded endoscopy (SEE) is an optical imaging technology that uses spatial wavelength multiplexing to conduct endoscopy in miniature, small diameter probes. Contrary to the previous side-viewing SEE devices, forward-viewing SEE probes are advantageous as they provide a look ahead that facilitates navigation and surveillance. The objective of this work was to develop a miniature forward-viewing SEE probe with a wide field of view and a high spatial resolution.
View Article and Find Full Text PDFWe have developed, to the best of our knowledge, a new method of conducting spectrally encoded color imaging using a single light beam. In our method, a single broadband light beam was incident on a diffraction grating, where the overlapped third order of the red, fourth order of the green, and fifth order of the blue spectral bands were focused on a line illuminating tissue. This configuration enabled each point on the line to be illuminated by three distinctive wavelengths, corresponding to red, green, and blue.
View Article and Find Full Text PDFLeucocytes play a key role in our immune system, protecting the body against infections using a wide range of biological mechanisms. Effective imaging and identification of leucocytes within the blood stream in patients is challenging, however, because of their low volume fraction in the blood, the high tissue scattering and the rapid blood flow. Spectrally encoded flow cytometry (SEFC) has recently been demonstrated effective for label-free high-resolution in vivo imaging of blood cells using an optical probe that does not require mechanical scanning.
View Article and Find Full Text PDFDuring a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage, and possibly organ failure. Measuring the structural and morphological changes in sickle cells is important for understanding the factors contributing to vessel blockage and for developing an effective treatment. In this work, we image blood cells from sickle cell anemia patients using spectrally encoded flow cytometry, and analyze the interference patterns between reflections from the cell membranes.
View Article and Find Full Text PDFMeasuring key physiological parameters of small blood samples extracted from patients could be useful for real-time clinical diagnosis at the point of care. An important parameter required from all blood tests is the blood hematocrit, a measure of the fractional volume occupied by the red cells within the blood. In this work, we present a method for evaluation of hematocrit based on the data acquired using spectrally encoded flow cytometry.
View Article and Find Full Text PDFTargeting individual cells within a heterogeneous tissue is a key challenge in cancer therapy, encouraging new approaches for cancer treatment that complement the shortcomings of conventional therapies. The highly localized interactions triggered by focused laser beams promise great potential for targeting single cells or small cell clusters; however, most laser-tissue interactions often involve macroscopic processes that may harm healthy nearby tissue and reduce specificity. Specific targeting of living cells using femtosecond pulses and nanoparticles has been demonstrated promising for various potential therapeutic applications including drug delivery via optoporation, drug release, and selective cell death.
View Article and Find Full Text PDFBiomed Opt Express
February 2016
Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times.
View Article and Find Full Text PDFBiomed Opt Express
November 2015
Measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we have simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the morphological parameters and the resulting characteristic interference patterns of the cell. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry that imaged the cells in a linear flow without artificial staining.
View Article and Find Full Text PDFSpectrally encoded endoscopy is a promising technique for minimally invasive imaging, allowing high-quality imaging through small diameter probes that do not require rapid mechanical scanning. A novel optical configuration that employs broadband visible light and dual-channel imaging is used to demonstrate a miniature forward-viewing probe having a high number of resolvable points, low speckle contrast, negligible backreflections, and high signal-to-noise ratio. The system would be most suitable for imaging through narrow ducts and vessels for clinical diagnosis at hard-to-reach locations in the body.
View Article and Find Full Text PDFNeuroligins (Nlgns) are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time.
View Article and Find Full Text PDFRecent studies indicate that synaptic vesicles (SVs) are continuously interchanged among nearby synapses at very significant rates. These dynamics and the lack of obvious barriers confining synaptic vesicles to specific synapses would seem to challenge the ability of synapses to maintain a constant amount of synaptic vesicles over prolonged time scales. Moreover, the extensive mobilization of synaptic vesicles associated with presynaptic activity might be expected to intensify this challenge.
View Article and Find Full Text PDF