In this study, we analyzed the application of potentiodynamic electrochemical impedance spectroscopy (PDEIS) for a selective in situ recognition of biological trace elements, i.e., Cr (III), Cu (II), and Fe (III).
View Article and Find Full Text PDFAn impedance-transducer sensor was developed for in situ detection of hydrogen sulfide (HS) and ammonia (NH) in aqueous media. Using cyclic voltammetry (CV), polypyrrole (PPy) was deposited on the surface of the microfabricated interdigitated gold electrode. Due to the proton acid doping effect of HS on PPy and ionic conduction of the film, the sensor showed a decreasing impedance response to HS unlike other reducing chemicals, i.
View Article and Find Full Text PDFIn this paper, an impedance-transduced sensor is developed based on a nanostructured graphene (GN) and poly (methyl methacrylate) (PMMA) sensing film for the detection of individual volatile organic compounds (VOCs) in aqueous media. Benefiting from a porous and high surface area, the nanostructured nanofiber is characterized by scanning electron microscopy (SEM) and optimized by the electrochemical impedance spectroscopy (EIS) technique. The recorded EIS data indicate the selective recognition of four VOCs of interest at a constant pH while there is no redox probe.
View Article and Find Full Text PDF