Publications by authors named "Adel Shirmohammadi"

Several studies have shown a correlation between outbreaks of and meteorological trends, especially related to temperature and precipitation. Additionally, current studies based on outbreaks are performed on data for the species , without considering its intra-species and genetic heterogeneity. In this study, we analyzed the effect of differential gene expression and a suite of meteorological factors on salmonellosis outbreak scale (typified by case numbers) using a combination of machine learning and count-based modeling methods.

View Article and Find Full Text PDF

The ability of 5 Best Management Practice (BMP) allocation methods that consider 8 pre-selected BMPs, to control 4 Nonpoint Source (NPS) constituents in 4 watersheds with contrasting land covers, is investigated. The methods range from random selection of BMPs on randomly selected sites, to optimized selection of BMPs at optimized locations, and the land covers range from natural to ultra-urban. The optimization methods rely on Genetic Algorithms (GA), and a method that uses expert systems is also applied.

View Article and Find Full Text PDF

In watersheds located in semi-arid regions, vegetation dynamics, evapotranspiration (ET), and associated water and energy balances collectively play a major role in controlling hydrological regimes and crop yield. As such, it is challenging to predict the complex hydrological processes and biophysical dynamics. This challenge increases in areas with limited data availability.

View Article and Find Full Text PDF

Hennig Brandt's discovery of phosphorus (P) occurred during the early European colonization of the Chesapeake Bay region. Today, P, an essential nutrient on land and water alike, is one of the principal threats to the health of the bay. Despite widespread implementation of best management practices across the Chesapeake Bay watershed following the implementation in 2010 of a total maximum daily load (TMDL) to improve the health of the bay, P load reductions across the bay's 166,000-km watershed have been uneven, and dissolved P loads have increased in a number of the bay's tributaries.

View Article and Find Full Text PDF

To reduce nutrient pollution in urban watersheds, residents need to voluntarily practice a range of stormwater Best Management Practices (BMPs). However, little is known about the underlying social factors that may act as barriers to BMP implementation. The overall goal of this study was to better understand barriers to BMP implementation by exploring the links among resident demographics, knowledge, and behaviors so that appropriate education can be more effectively developed and targeted.

View Article and Find Full Text PDF

Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences.

View Article and Find Full Text PDF

Vegetated filter strips (VFS) are commonly recommended as a best management practice to prevent manure-borne microorganisms from reaching surface water resources. However, relatively little is known about the efficacy of VFS in mitigating bacterial runoff from land-applied swine manure. A field lysimeter study was designed to evaluate the effect of surface soil hydrologic conditions and vegetation on the retention of swine manure-borne Escherichia coli and Salmonella under simulated rainfall conditions.

View Article and Find Full Text PDF

Background: Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan.

Methods: A Galerkin-based finite element model was developed and implemented to solve a system of two coupled partial differential equations governing biomolecule transport and reaction in live cells.

View Article and Find Full Text PDF

The infiltration models of Kostiakov, Green-Ampt, and Philip (two and three terms equations) were used, calibrated, and evaluated to simulate in-situ infiltration in nine different soil types. The Osborne-Moré modified version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the double ring infiltrometers and the infiltration equations, to estimate the model parameters. Comparison of the model outputs with the experimental data indicates that the models can successfully describe cumulative infiltration in different soil types.

View Article and Find Full Text PDF

A decision support system in the framework of the geographic information system (GIS) and subsurface flow model, Hydrosub, were used to identify critical areas from simulated spatial distributions of relative nitrogen export. Diagnosis and prescription Expert Systems (ES) are developed and applied to the identification of probable causes of excessive nitrogen export and selection of appropriate Best Management Practices (BMPs). The result is a spatially distributed set of recommended Best Management Practices that are feasible economically and environmentally.

View Article and Find Full Text PDF

Background: Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP) is becoming more important.

Methods And Results: The Osborne-Moré extended version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the Fluorescence Recovery after Photobleaching (FRAP) protocol, and the numerical solution of a set of two partial differential equations governing macromolecule mass transport and reaction in living cells, to inversely estimate optimized values of the molecular diffusion coefficient and binding rate parameters of GFP-tagged glucocorticoid receptor. The results indicate that the FRAP protocol provides enough information to estimate one parameter uniquely using a nonlinear optimization technique.

View Article and Find Full Text PDF

Success of a Biological Engineering undergraduate educational program can be measured in a number of ways, but however it is measured, a presently successful program can translate into an unsuccessful program if it cannot adjust to different conditions posed by technical advances, student characteristics, and academic pressures. Described in this paper is a Biological Engineering curriculum that has changed significantly since its transformation from Agricultural Engineering in 1993. As a result, student numbers have continued to climb, specific objectives have emerged, and unique courses have been developed.

View Article and Find Full Text PDF

This hypothesis-generating study explores spatial patterns of childhood cancers in Maryland and investigates their potential associations with herbicides and nitrates in groundwater. The Maryland Cancer Registry (MCR) provided data for bone and brain cancers, leukemia, and lymphoma, for ages 0-17, during the years 1992-1998. Cancer clusters and relative risks generated in the study indicate higher relative risk areas and potential clusters in several counties.

View Article and Find Full Text PDF

Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column.

View Article and Find Full Text PDF

Phosphorus (P) is one of the main nutrients controlling algal production in aquatic systems. Proper management of P in agricultural production systems can greatly enhance our ability to combat pollution of aquatic environments. To address this issue, a decision support system (DSS) consisting of the Maryland Phosphorus Index (PI), diagnosis expert system (ES), prescription ES, and a nonpoint-source pollution model, Ground Water Loading Effects of Agricultural Management Systems (GLEAMS), was developed and applied to an agricultural watershed in southern Sweden.

View Article and Find Full Text PDF