Publications by authors named "Adel Bakhshipour"

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

The most widely cultivated species globally is Actinidia deliciosa cv. 'Hayward'. However, in recent years, consumers have shown greater demand for new varieties with novel flesh colour, flavour and appearance in international markets.

View Article and Find Full Text PDF

The ability of a data fusion system composed of a computer vision system (CVS) and an electronic nose (e-nose) was evaluated to predict key physiochemical attributes and distinguish red-fleshed kiwifruit produced in three distinct regions in northern Iran. Color and morphological features from whole and middle-cut kiwifruits, along with the maximum responses of the 13 metal oxide semiconductor (MOS) sensors of an e-nose system, were used as inputs to the data fusion system. Principal component analysis (PCA) revealed that the first two principal components (PCs) extracted from the e-nose features could effectively differentiate kiwifruit samples from different regions.

View Article and Find Full Text PDF

A data fusion strategy based on hyperspectral imaging (HSI) and electronic nose (e-nose) systems was developed in this study to inspect the postharvest ripening process of Hayward kiwifruit. The extracted features from the e-nose and HSI techniques, in single or combined mode, were used to develop machine learning algorithms. Performance evaluations proved that the fusion of olfactory and reflectance data improves the performance of discriminative and predictive algorithms.

View Article and Find Full Text PDF

Application of hyperspectral imaging (HSI) and data analysis algorithms was investigated for early and non-destructive detection of Botrytis cinerea infection. Hyperspectral images were collected from laboratory-based contaminated and non-contaminated fruits at different day intervals. The spectral wavelengths of 450 nm to 900 nm were pretreated by applying moving window smoothing (MWS), standard normal variates (SNV), multiplicative scatter correction (MSC), Savitzky-Golay 1 derivative, and Savitzky-Golay 2 derivative algorithms.

View Article and Find Full Text PDF

Plant leaf area (LA) is a key metric in plant monitoring programs. Machine learning methods were used in this study to estimate the LA of four plum genotypes, including three greengage genotypes (Prunus domestica [subsp. italica var.

View Article and Find Full Text PDF

Infectious plant diseases are caused by pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, phytoplasma, and nematodes. Plant diseases have a significant effect on the plant quality and yield and they can destroy the entire plant if they are not controlled in time. To minimize disease-related losses, it is essential to identify and control pathogens in the early stages.

View Article and Find Full Text PDF

Drying characteristics of stevia leaves were investigated in an infrared (IR)-assisted continuous-flow hybrid solar dryer. Drying experiments were conducted at the inlet air temperatures of 30, 40, and 50°C, air inlet velocities of 7, 8, and 9 m/s, and IR lamp input powers of 0, 150, and 300 W. The results indicated that inlet air temperature and IR lamp input power had significant effect on drying time ( < .

View Article and Find Full Text PDF

A combination of decision tree (DT) and fuzzy logic techniques was used to develop a fuzzy model for differentiating peanut plant from weeds. Color features and wavelet-based texture features were extracted from images of peanut plant and its three common weeds. Two feature selection techniques namely Principal Component Analysis (PCA) and Correlation-based Feature Selection (CFS) were applied on input dataset and three Decision Trees (DTs) including J48, Random Tree (RT), and Reduced Error Pruning (REP) were used to distinguish between different plants.

View Article and Find Full Text PDF

Banana undergoes significant quality indices and color transformations during shelf-life process, which in turn affect important chemical and physical characteristics for the organoleptic quality of banana. A computer vision system was implemented in order to evaluate color of banana in RGB, L*a*b* and HSV color spaces, and changes in color features of banana during shelf-life were employed for the quantitative prediction of quality indices. The radial basis function (RBF) was applied as the kernel function of support vector regression (SVR) and the color features, in different color spaces, were selected as the inputs of the model, being determined total soluble solids, pH, titratable acidity and firmness as the output.

View Article and Find Full Text PDF