Publications by authors named "Adekanmi Adeyinka Adegun"

Object detection in remotely sensed satellite images is critical to socio-economic, bio-physical, and environmental monitoring, necessary for the prevention of natural disasters such as flooding and fires, socio-economic service delivery, and general urban and rural planning and management. Whereas deep learning approaches have recently gained popularity in remotely sensed image analysis, they have been unable to efficiently detect image objects due to complex landscape heterogeneity, high inter-class similarity and intra-class diversity, and difficulty in acquiring suitable training data that represents the complexities, among others. To address these challenges, this study employed multi-object detection deep learning algorithms with a transfer learning approach on remotely sensed satellite imagery captured on a heterogeneous landscape.

View Article and Find Full Text PDF

Purpose: Breast cancer remains a serious public health problem that results in the loss of lives among women. However, early detection of its signs increases treatment options and the likelihood of cure. Although mammography has been established to be a proven technique of examining symptoms of cancer in mammograms, the manual observation by radiologists is demanding and often prone to diagnostic errors.

View Article and Find Full Text PDF