The current study aimed to investigate the possibility of rapid and accurate diagnoses of Panic disorder (PD) and Major depressive disorder (MDD) using machine learning. The support vector machine method was applied to 2-channel EEG signals from the frontal lobes (Fp1 and Fp2) of 149 participants to classify PD and MDD patients from healthy individuals using non-linear measures as features. We found significantly lower correlation dimension and Lempel-Ziv complexity in PD patients and MDD patients in the left hemisphere compared to healthy subjects at rest.
View Article and Find Full Text PDF