Publications by authors named "Adedolapo Ojoawo"

How can a single protein domain encode a conformational landscape with multiple stably folded states, and how do those states interconvert? Here, we use real-time and relaxation-dispersion NMR to characterize the conformational landscape of the circadian rhythm protein KaiB from . Unique among known natural metamorphic proteins, this KaiB variant spontaneously interconverts between two monomeric states: the "Ground" and "Fold-switched" (FS) states. KaiB in its FS state interacts with multiple binding partners, including the central KaiC protein, to regulate circadian rhythms.

View Article and Find Full Text PDF

How can a single protein domain encode a conformational landscape with multiple stably-folded states, and how do those states interconvert? Here, we use real-time and relaxation-dispersion NMR to characterize the conformational landscape of the circadian rhythm protein KaiB from . Unique among known natural metamorphic proteins, this KaiB variant spontaneously interconverts between two monomeric states: the "Ground" and "Fold-switched" (FS) state. KaiB in its FS state interacts with multiple binding partners, including the central KaiC protein, to regulate circadian rhythms.

View Article and Find Full Text PDF

AlphaFold2 (ref. ) has revolutionized structural biology by accurately predicting single structures of proteins. However, a protein's biological function often depends on multiple conformational substates, and disease-causing point mutations often cause population changes within these substates.

View Article and Find Full Text PDF

Apoptosis is a common cell death program that is important in human health and disease. Signaling in apoptosis is largely driven through protein-protein interactions. The BCL-2 family proteins function in protein-protein interactions as key regulators of mitochondrial poration, the process that initiates apoptosis through the release of cytochrome c, which activates the apoptotic caspase cascade leading to cellular demolition.

View Article and Find Full Text PDF

Permeabilization of the outer mitochondrial membrane initiates apoptotic cell death. B-cell lymphoma 2 (BCL-2) antagonist killer (BAK) and BCL-2-associated X (BAX) mediate mitochondrial poration, but how this process unfolds remains poorly defined. Two studies in this issue investigate the transition of dormant, inactive BAK monomer to a highly dynamic membrane-associated, pore-forming oligomer.

View Article and Find Full Text PDF

Abnormal aggregation of alpha-synuclein (α-syn), an intrinsically disordered neuronal protein, is strongly implicated in the development of Parkinson's disease. Efforts to better understand α-syn's native function and its pathogenic role in neurodegeneration have revealed that the protein interacts with anionic lipid vesicles adoption of an amphipathic α-helical structure; however, the ability of α-syn to remodel lipid membranes has made it difficult to decipher the role of vesicle surface curvature in protein binding behavior. In this study, sodium dodecyl sulfate (SDS)-coated gold nanoparticles (AuNPs), which mimic bilayer vesicle architecture, were synthesized in order to conduct a systematic investigation into the binding interaction of α-syn and two of its mutants (A30P and E46K) with rigid lipid vesicle mimics of defined surface curvature.

View Article and Find Full Text PDF