Publications by authors named "Adedayo M Sanni"

Glass vials are the most widely used primary containers for the packaging of parenteral products due to their optical clarity, general inertness, and hermetic properties, but under certain circumstances, they can pose safety concerns. Most of these issues are related to the potential formation of glass particulates through delamination or precipitation, resulting from the chemical interaction between the drug product and the inner surface of the glass vial. Hence, it is imperative for pharmaceutical companies to conduct product-vial compatibility studies to determine the appropriate packaging/container closure system.

View Article and Find Full Text PDF

Controlling the light emission spectra of low-dimensional hybrid organic-inorganic materials remains an important goal toward the implementation of these materials into real-world optoelectronic devices. In this study, we present evidence that the self-assembly of two-dimensional (2D) silver bismuth iodide double perovskite derivatives at the interface of aqueous and organic solutions leads to the formation of defects capable of modulating the light emission spectra of these materials. Through an analysis of the structural parameters used to explain the photoluminescence (PL) spectra of 2D perovskites, we show the light spectra emitted by (4-ammonium methyl)piperidinium (4-AMP) and (3-ammonium methyl)pyridinium (3-AMPy)-spaced AgBiI double perovskites formed through interfacial solution-phase chemistry differ qualitatively and quantitatively from thin film samples.

View Article and Find Full Text PDF

In this study, we examine the effects of changing organic cation concentrations on the efficiency and photophysical implications of exciton trapping in two-dimensional hybrid lead iodide self-assembled quantum wells (SAQWs). We show that increasing the concentration of alkyl and aryl ammonium cations causes the formation of SAQWs at a liquid-liquid interface to possess intense, broadband subgap photoluminescence (PL) spectra. Electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopic studies suggest that materials formed under these cation concentrations possess morphologies consistent with inhibited crystallization kinetics but exhibit qualitatively similar bulk chemical bonding to nonluminescent materials stabilized in the same structure from precursor solutions containing lower cation concentrations.

View Article and Find Full Text PDF

The properties of mid-band-gap electronic states are central to the potential application of self-assembled, hybrid organic-inorganic perovskite-like quantum wells in optoelectronic technologies. We investigate broadband light emission from mid-band-gap states in fast-forming hybrid organic lead iodide quantum wells at room temperature. By comparing temperature- and intensity-dependent photoluminescence (PL) spectra emitted from butyl ammonium spaced inorganic layers, we propose that structural defects in a metastable material phase trap excitons and cause broadband light emission spanning wavelengths between 600 and 1000 nm.

View Article and Find Full Text PDF