Publications by authors named "Ade Riana"

Purpose: Calculation of the uncertainty of the individual time-integrated activity coefficient (TIACs) is desirable in molecular radiotherapy. However, the calculation of TIAC's uncertainty in single-time-point (STP) method has never been reported in the literature. This study presents a method based on the Bayesian fitting (BF) to calculate the standard deviation (SD) of individual TIACs in the STP dosimetry.

View Article and Find Full Text PDF

Purpose: Personalized treatment planning in Molecular Radiotherapy (MRT) with accurately determining the absorbed dose is highly desirable. The absorbed dose is calculated based on the Time-Integrated Activity (TIA) and the dose conversion factor. A crucial unresolved issue in MRT dosimetry is which fit function to use for the TIA calculation.

View Article and Find Full Text PDF

Purpose: This project aims to develop and evaluate a method for accurately determining time-integrated activities (TIAs) in single-time-point (STP) dosimetry for molecular radiotherapy. It performs a model selection (MS) within the framework of the nonlinear mixed-effects (NLME) model (MS-NLME).

Methods: Biokinetic data of [In]In-DOTATATE activity in kidneys at T1 = (2.

View Article and Find Full Text PDF

Introduction: Estimation of accurate time-integrated activity coefficients (TIACs) and radiation absorbed doses (ADs) is desirable for treatment planning in peptide-receptor radionuclide therapy (PRRT). This study aimed to investigate the accuracy of a simplified dosimetry using a physiologically-based pharmacokinetic (PBPK) model, a nonlinear mixed effect (NLME) model, and single-time-point imaging to calculate the TIACs and ADs of Y-DOTATATE in various organs of dosimetric interest and tumors.

Materials & Methods: Biokinetic data of In-DOTATATE in tumors, kidneys, liver, spleen, and whole body were obtained from eight patients using planar scintigraphic imaging at T1 = (2.

View Article and Find Full Text PDF

Background: The calculation of time-integrated activities (TIAs) for tumours and organs is required for dosimetry in molecular radiotherapy. The accuracy of the calculated TIAs is highly dependent on the chosen fit function. Selection of an adequate function is therefore of high importance.

View Article and Find Full Text PDF