Publications by authors named "Adayev T"

A high performing male with an unmethylated full mutation in the fragile X messenger ribonucleoprotein 1 () gene surpassed our expectations into young adulthood. Although initial genetic findings helped make a correct fragile X syndrome (FXS) determination, the report was insufficient. Ten years later, we repeated and conducted additional genetic and clinical studies to determine whether more information could assist with treatment and counseling.

View Article and Find Full Text PDF

Background Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. Gene therapy may offer an efficient method to ameliorate the symptoms of this disorder. Methods An AAVphp.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) is caused by a trinucleotide expansion leading to silencing of the FMR1 gene and lack of expression of Fragile X Protein (FXP, formerly known as Fragile X Mental Retardation Protein, FMRP). Phenotypic presentation of FXS is highly variable, and the lack of reproducible, sensitive assays to detect FXP makes evaluation of peripheral FXP as a source of clinical variability challenging. We optimized a Luminex-based assay to detect FXP in dried blot spots for increased reproducibility and sensitivity by improving reagent concentrations and buffer conditions.

View Article and Find Full Text PDF

Fragile X syndrome results from the absence of the FMR1 gene product-Fragile X Mental Retardation Protein (FMRP). Fragile X animal research has lacked a reliable method to quantify FMRP. We report the development of an array of FMRP-specific monoclonal antibodies and their application for quantitative assessment of FMRP (qFMRPm) in mouse tissue.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is caused by silencing of the gene, which encodes a protein with a critical role in synaptic plasticity. The molecular abnormality underlying silencing, CGG repeat expansion, is well characterized; however, delineation of the pathway from DNA to RNA to protein using biosamples from well characterized patients with FXS is limited. Since FXS is a common and prototypical genetic disorder associated with intellectual disability (ID) and autism spectrum disorder (ASD), a comprehensive assessment of the DNA-RNA-protein pathway and its correlations with the neurobehavioral phenotype is a priority.

View Article and Find Full Text PDF

Background: DYRK1A is implicated in mental retardation and Alzheimer's disease (AD) dementia of Down syndrome (DS) individuals. The protein is associated with cytoskeleton and altered expression has been shown to impair the cytoskeletal network via dosage effect.

Objective: Our original observations of marked reduction of cytoskeletal proteins associated with DYRK1A in brains and lymphoblastoid cell lines from DS and AD prompted an investigation whether cytoskeleton abnormalities could potentially be used as biomarkers of AD.

View Article and Find Full Text PDF

Many males with FXS meet criteria for ASD. This study was designed to (1) describe ASD symptoms in adolescent and young adult males with FXS (n = 44) and (2) evaluate the contributions to ASD severity of cognitive, language, and psychiatric factors, as well as FMRP (the protein deficient in FXS). A few ASD symptoms on the ADOS-2 were universal in the sample.

View Article and Find Full Text PDF

Historically, investigations of have focused almost exclusively on the clinical effects of CGG expansion within the categories of the premutation (55-200 CGG repeats) and fragile X syndrome (>200 CGG repeats). However, emerging evidence suggests that CGG-dependent phenotypes may occur across allele sizes traditionally considered within the "normal" range. This study adopted an individual-differences approach to determine the association between language production ability and CGG repeat length across the full range of normal, intermediate, and premutation alleles.

View Article and Find Full Text PDF

Fragile X syndrome (FXS), caused by lack of fragile X mental retardation protein (FMRP), is associated with a high prevalence of autism. The deficit of FMRP reported in idiopathic autism suggests a mechanistic overlap between FXS and autism. The overall goal of this study is to detect neuropathological commonalities of FMRP deficits in the brains of people with idiopathic autism and with syndromic autism caused by dup15q11.

View Article and Find Full Text PDF

Background: Autonomic dysfunction is implicated in a range of psychological conditions, including depression and anxiety. The () premutation is a common genetic mutation that affects ~1:150 women and is associated with psychological vulnerability. This study examined cardiac indicators of autonomic function among women with the premutation and control women as potential biomarkers for psychological risk that may be linked to .

View Article and Find Full Text PDF

The DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) gene encodes a proline-directed Ser/Thr kinase. Elevated expression and/or altered distribution of the kinase have been implicated in the neurological impairments associated with Down syndrome (DS) and Alzheimer's disease (AD). Consequently, DYRK1A inhibition has been of significant interest as a potential strategy for therapeutic intervention of DS and AD.

View Article and Find Full Text PDF

The final product of gene transcription, Fragile X Mental Retardation Protein 1 (FMRP), is an RNA binding protein that acts as a repressor of translation. FMRP is expressed in several tissues and plays important roles in neurogenesis, synaptic plasticity, and ovarian functions and has been implicated in a number of neuropsychological disorders. The loss of FMRP causes Fragile X Syndrome (FXS).

View Article and Find Full Text PDF

Background: The fragile X syndrome (FXS) results from mutation of the FMR1 gene that prevents expression of its gene product, FMRP. We previously characterized 215 dried blood spots (DBS) representing different FMR1 genotypes and ages with a Luminex-based immunoassay (qFMRP). We found variable FMRP levels in the normal samples and identified affected males by the drastic reduction of FMRP.

View Article and Find Full Text PDF

Fragile X is the most common inherited cause of intellectual disability and is frequently associated with autism. The syndrome is due to mutations of the FMR1 gene that result in the absence of fragile X mental retardation protein (FMRP). We have developed a rapid, highly sensitive method for quantifying FMRP from dried blood spots and lymphocytes.

View Article and Find Full Text PDF

The triplication of the DYRK1A gene encoding proline-directed serine/threonine kinase and located in the critical region of Down syndrome (DS) has been implicated in cognitive deficits and intellectual disability of individuals with DS. We investigated the effect of abnormal levels of this kinase on the cytoskeleton in brain and peripheral tissues of DS subjects. In DS tissues, the predictable approximately equal to 1.

View Article and Find Full Text PDF

Dynamin 1 is thought to mediate synaptic transmission through interactions with multiple endocytic accessory proteins in a phosphorylation-dependent manner. Previously, we have shown that DYRK1A, a chromosome 21-encoded kinase implicated in the mental retardation of Down syndrome, phosphorylates primarily serine 857 (S857) in the proline-rich domain, found only in 1xa, one of the alternative C-terminal splicing isoforms of dynamin 1. Dynamin 1xa and 1xb isoforms are able to assemble into heterologous complexes and are coregulated by DYRK1A phosphorylation in binding to amphiphysin in vitro.

View Article and Find Full Text PDF

Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A), encoded by a gene located in the Down syndrome (DS) critical region, is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment, differentiation, maturation, and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS, pharmacological normalization of DYRK1A activity has been postulated as DS therapy.

View Article and Find Full Text PDF

Harmine is a β-carboline alkaloid. The compound is a potent inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A), a kinase implicated in Down syndrome. In this study, we show that harmine functions as an ATP-competitive inhibitor against Dyrk1A.

View Article and Find Full Text PDF

Triplication of chromosome 21 in Down syndrome (DS) results in overexpression of the minibrain kinase/dual-specificity tyrosine phosphorylated and regulated kinase 1A gene (DYRK1A). DYRK1A phosphorylates cytoplasmic tau protein and appears in intraneuronal neurofibrillary tangles (NFTs). We have previously shown significantly more DYRK1A-positive NFTs in DS brains than in sporadic Alzheimer disease (AD) brains.

View Article and Find Full Text PDF

The gene encoding the minibrain kinase/dual-specificity tyrosine phosphorylated and regulated kinase 1A (DYRK1A) is located in the Down syndrome (DS) critical region of chromosome 21. The third copy of DYRK1A is believed to contribute to abnormal brain development in patients with DS. In vitro studies showing that DYRK1A phosphorylates tau protein suggest that this kinase is also involved in tau protein phosphorylation in the human brain and contributes to neurofibrillary degeneration, and that this contribution might be enhanced in patients with DS.

View Article and Find Full Text PDF

The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is localized in human chromosome 21, and its overexpression has been associated with the learning and memory deficits of Down syndrome. DYRK1A contains a Y319XY321 motif shared by all members of the DYRK protein kinase family. Residue Y321 in the motif is phosphorylated in DYRK1A prepared from Escherichia coli and from eukaryotic cells.

View Article and Find Full Text PDF

The presence of serotonin 1A receptor (5-HT(1A)-R) in the hippocampus, amygdala, and most regions of the frontal cortex is essential between postnatal day-5-21 (P5-21) for the expression of normal anxiety levels in adult mice. Thus, the 5-HT(1A)-R plays a crucial role in this time window of brain development. We show that the 5-HT(1A)-R-mediated stimulation of extracellular signal-regulated kinases 1 and 2 (Erk1/2) in the hippocampus undergoes a transition between P6 and P15.

View Article and Find Full Text PDF

Down syndrome (DS) is the most common genetic disorder associated with mental retardation (MR). It is believed that many of the phenotypic features of DS stem from enhanced expression of a set of genes located within the triplicated region on chromosome 21. Among those genes is DYRK1A encoding dual-specificity proline-directed serine/treonine kinase, which, as documented by animal studies, can potentially contribute to cognitive deficits in DS.

View Article and Find Full Text PDF

MNB/DYRK1A is a proline-directed serine/threonine kinase implicated in Down syndrome (DS). In an earlier screening, two proteins from adult rat brain, one 100kDa and the other 140 kDa, were found to be prominently phosphorylated by the kinase. The 100-kDa protein was previously characterized as an isoform of dynamin 1.

View Article and Find Full Text PDF

Minibrain kinase/dual-specificity tyrosine phosphorylation regulated kinase 1A (MNB/DYRK1A) is a proline/arginine-directed serine/threonine kinase implicated in the learning deficits of Down syndrome. Epigallocatechin-3-gallate (EGCG), the major tea polyphenolic compound, is a potent MNB/DYRK1A inhibitor. In this study, we investigated the mechanism of EGCG inhibition of MNB/DYRK1A using a combination of genetic and biochemical approaches.

View Article and Find Full Text PDF