Publications by authors named "Aday D"

Endocrine active compounds (EACs) are pollutants that have been recognized as an emerging and widespread threat to aquatic ecosystems globally. Intersex, the presence of female germ cells within a predominantly male gonad, is considered a biomarker of endocrine disruption caused by EACs. We measured a suite of EACs and assessed their associated impacts on fish intersex occurrence and severity in a large, regulated river system in North Carolina and South Carolina, USA.

View Article and Find Full Text PDF

Estrogens and estrogen mimics are commonly found in surface waters and are associated with deleterious effects in fish populations. Impaired fertility and fecundity in fish following chronic exposures to estrogens and estrogen mimics during critical windows in development are well documented. However, information regarding differential reproductive effects of exposure within defined developmental stages remains sparse.

View Article and Find Full Text PDF

Male fish are susceptible to developing intersex, a condition characterized by the presence of testicular oocytes. In the present study, the relationship between intersex and exposure to estrogenic endocrine active contaminants (EACs) was assessed for 2 genera of sport fish, Micropterus and Lepomis, at 20 riverine sites. Seasonal trends and relationships between EACs and intersex (prevalence and severity) were examined at varying putative sources of EACs throughout North Carolina, identified as point sources, nonpoint sources, and reference sites.

View Article and Find Full Text PDF

Teleost fish express at least three estrogen receptor (ER) subtypes. To date, however, the individual role of these ER subtypes in regulating expression of estrogen responsive genes remains ambiguous. Here, we investigate putative roles of three ER subtypes in Japanese medaka (Oryzias latipes), using vitellogenin (VTG) I and II as model genes.

View Article and Find Full Text PDF

The presence of endocrine-disrupting compounds (EDCs), particularly estrogenic compounds, in the environment has drawn public attention across the globe, yet a clear understanding of the extent and distribution of estrogenic EDCs in surface waters and their relationship to potential sources is lacking. The objective of the present study was to identify and examine the potential input of estrogenic EDC sources in North Carolina water bodies using a geographic information system (GIS) mapping and analysis approach. Existing data from state and federal agencies were used to create point and nonpoint source maps depicting the cumulative contribution of potential sources of estrogenic EDCs to North Carolina surface waters.

View Article and Find Full Text PDF

Maternal transfer of mercury in fish represents a potential route of elimination for adult females and a risk to developing embryos. To better quantify maternal transfer, we measured Hg in female largemouth bass (Micropterus salmoides) muscle and eggs from six waterbodies. Mercury in eggs from two waterbodies exceeded a US federal screening level (0.

View Article and Find Full Text PDF

Consumption of fish has well-known human health benefits, though some fish may contain elevated levels of mercury (Hg) that are especially harmful to developing children. Fish length is most often the basis for establishing fishery harvest regulations that determine which fish will ultimately be consumed by humans. It is, therefore, essential to quantify the relationship between fish length and Hg accumulation in regard to harvest regulations for effective fishery and public health policy.

View Article and Find Full Text PDF

Consumption of marine fish provides both benefits (lean protein, omega-3 fatty acids and essential nutrients) and risks (main source of mercury (Hg) exposure for humans). Mercury is a potent neurotoxin and the source of more fish advisories nationwide than any other toxicant. Despite the widespread nature of Hg, it is unknown whether local Hg contamination reflects national and regional levels often used as bases to inform consumers of potential fish consumption risk.

View Article and Find Full Text PDF

Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury.

View Article and Find Full Text PDF

Much of the mercury contamination in aquatic biota originates from coal-fired power plants, point sources that release mercury into the atmosphere. Understanding mercury dynamics is primarily important because of the toxic threat mercury poses to wildlife and humans through the consumption of contaminated fish. In this study, we quantified the relative importance of proximity to coal-fired power plants on mercury accumulation in two fish species of different trophic positions.

View Article and Find Full Text PDF

The ultimate body size that an individual fish achieves can be a function both of direct effects of growth or indirect effects associated with the timing of sexual maturation (and associated energetic tradeoffs). These alternatives are often invoked to explain variation in body size within and among fish populations, but have rarely been considered simultaneously. We assessed how resource availability and timing of maturation interact to influence individual body size of bluegill (Lepomis macrochirus).

View Article and Find Full Text PDF