Molecular strong coupling offers exciting prospects in physics, chemistry, and materials science. While attention has been focused on developing realistic models for the molecular systems, the important role played by the entire photonic mode structure of the optical cavities has been less explored. We show that the effectiveness of molecular strong coupling may be critically dependent on cavity finesse.
View Article and Find Full Text PDFLabel-free thermometry is a pivotal tool for many disciplines. However, most current approaches are only suitable for planar heat sources in steady state, thereby restricting the range of systems that can be reliably studied. Here, we introduce pump probe-based optical diffraction tomography (ODT) as a method to map temperature precisely and accurately in three dimensions (3D) at the single-particle level.
View Article and Find Full Text PDFThe emergence of dielectric open optical cavities has opened a new research avenue in nanophotonics. In particular, dielectric microspheres support a rich set of cavity modes with varying spectral characteristics, making them an ideal platform to study molecule-cavity interactions. The symmetry of the structure plays a critical role in the outcoupling of these modes and, hence, the perceived molecule-cavity coupling strength.
View Article and Find Full Text PDFCan we couple multiple molecular species to soft cavities? The answer to this question has relevance in designing open cavities for polaritonic chemistry applications. Because of the differences in adhesiveness, it is difficult to couple multiple molecular species to open cavities in a controlled and precise manner. In this Letter, we discuss the procedure to coat multiple dyes, TDBC and S2275, onto a dielectric microsphere using a layer-by-layer deposition technique so as to facilitate the multimolecule coupling.
View Article and Find Full Text PDFThe way molecules absorb, transfer, and emit light can be modified by coupling them to optical cavities. The extent of the modification is often defined by the cavity-molecule coupling strength, which depends on the number of coupled molecules. We experimentally and numerically study the evolution of photoemission from a thin layered J-aggregated molecular material strongly coupled to a Fabry-Perot microcavity as a function of the number of coupled layers.
View Article and Find Full Text PDFWe report on the experimental observation of beaming elastic and surface enhanced Raman scattering (SERS) emission from a bent-nanowire on a mirror (B-NWoM) cavity. The system was probed with polarization resolved Fourier plane and energy-momentum imaging to study the spectral and angular signature of the emission wavevectors. The out-coupled elastically scattered light from the kink occupies a narrow angular spread.
View Article and Find Full Text PDFChiral interfaces provide a new platform to execute quantum control of light-matter interactions. One phenomenon which has emerged from engineering such nanophotonic interfaces is spin-momentum locking akin to similar reports in electronic topological materials and phases. While there are reports of spin-momentum locking with combination of chiral emitters and/or chiral metamaterials with directional far field excitation it is not readily observable with both achiral emitters and metamaterials.
View Article and Find Full Text PDFWe report strong coupling of a monolayer of J-aggregated dye molecules to the whispering gallery modes of a dielectric microsphere at room temperature. We systematically studied the evolution of strong coupling as the number of layers of dye molecules was increased and found the Rabi splitting to rise from 56 meV for a single layer to 94 meV for four layers of dye molecules. We compare our experimental results with two-dimensional (2D) numerical simulations and a simple coupled oscillator model, finding good agreement.
View Article and Find Full Text PDFWe report the design and fabrication of V-shaped plasmonic meta-polymers on a glass substrate or silicon wafer using a surface functionalization approach. The efficacy of the assembly method is examined by analyzing the surface enhanced Raman scattering by an individual V-shaped antenna experimentally and using computational simulations to determine the polarization dependence of local electromagnetic field enhancement.
View Article and Find Full Text PDFDirectional harmonic generation is an important property characterizing the ability of nonlinear optical antennas to diffuse the signal in a well-defined region of space. Herein, we show how sub-wavelength facets of an organic molecular mesowire crystal can be utilized to systematically vary the directionality of second-harmonic generation (SHG) in the forward-scattering geometry. We demonstrate this capability on crystalline diamonoanthraquinone (DAAQ) mesowires with sub-wavelength facets.
View Article and Find Full Text PDFSpin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams.
View Article and Find Full Text PDFVertical nanowires facilitate an innovative mechanism to channel the optical field in the orthogonal direction and act as a nanoscale light source. Subwavelength, vertically oriented nanowire platforms, both of plasmonic and semiconducting variety, can facilitate interesting far-field emission profiles and potentially carry orbital angular momentum states. Motivated by these prospects, in this Letter, we show how a hybrid plasmonic-organic platform can be harnessed to engineer far-field radiation.
View Article and Find Full Text PDFWe report on the experimental observation of differential wavevector distribution of surface-enhanced Raman scattering (SERS) and fluorescence from dye molecules confined to a gap between plasmonic silver nanowire and a thin, gold mirror. The fluorescence was mainly confined to higher values of in-plane wavevectors, whereas SERS signal was uniformly distributed along all the wavevectors. The optical energy-momentum spectra from the distal end of the nanowire revealed strong polarization dependence of this differentiation.
View Article and Find Full Text PDF