Publications by authors named "Adao-Novaes J"

The prion protein (PrP) binds copper and affects copper metabolism, albeit among a poorly understood functional landscape. Much of the data on physiological roles of PrP were obtained in mice of mixed genetic background deficient of the PrP-coding gene Prnp. This strategy is currently under scrutiny due to the flanking gene problem, in particular related with a polymorphism, typical of both the 129Sv and 129Ola mouse substrains, in the Sirpa gene located in the vicinity of Prnp.

View Article and Find Full Text PDF
Article Synopsis
  • Brain ischemia significantly contributes to disability and death globally, highlighting the urgent need for new treatments.
  • Researchers are utilizing gene therapy by overexpressing the CHIP protein using a modified virus to protect neurons in models of oxygen and glucose deprivation.
  • The study found that increasing CHIP levels reduced neuronal damage and improved signaling pathways related to stress responses, indicating potential for future therapies in brain ischemia.
View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death.

View Article and Find Full Text PDF

Background/aims: Renal tubular cells are the main target of ischemic insult associated with acute renal injury. Low oxygen and nutrient supplies result in ATP depletion, leading to cell death and loss of renal function. A possible mechanism by which bone marrow-derived cells support renal tissue regeneration relies on the capacity of mononuclear cells (BMMC), particularly mesenchymal stem cells (MSC), to secrete paracrine factors that mediate support for kidney regeneration.

View Article and Find Full Text PDF

There is some evidence to show a possible role of guanosine in the modulation of cellular function, in particular, in the neuronal system. However, nothing is known about the role of guanine in renal function. The aim of the present work was to investigate the role of guanine on modulation of Na+-ATPase activity in isolated basolateral membrane (BLM) of the renal cortex.

View Article and Find Full Text PDF

Retinal dystrophies involve extensive photoreceptor apoptosis. Neuroprotective effects of insulin-like growth factor (IGF)-1 have been demonstrated in various tissues, including the retina. The aim of this study was to investigate: (i) the action of IGF-1 upon selective photoreceptor death induced by okadaic acid (OA); and (ii) signaling pathways related to both OA-induced cell death and IGF-1 neuroprotective effect.

View Article and Find Full Text PDF

Although interleukin (IL)-4 is described as a prototypical anti-inflammatory cytokine, in recent years its role as a neuromodulatory cytokine has been extensively discussed. This review highlights the pivotal contributions of IL-4 during the development and normal physiology of neural cells as well as IL-4 connections with the pathophysiology of degenerative or inflammatory processes observed in the central and peripheral nervous system.

View Article and Find Full Text PDF

Although the photoreceptors cell death is the main cause of some retinopathies diseases, the mechanisms involved in this process are poorly understood. The neuroprotective effects of interleukin-4 (IL-4) have been shown in several tissues, including retina. We demonstrate that treatment of rat retinal explants with IL-4 completely inhibited the thapsigargin-induced rod photoreceptor cell death after 24 hr in culture.

View Article and Find Full Text PDF

In the present work, we demonstrate that adenine reduced Na(+)-ATPase activity in isolated basolateral membrane (BLM) of proximal tubule in a dose-dependent manner. Adenine metabolism was ruled out by TLC analysis of the potential [(3)H]adenine derived-metabolites. Specific binding of [(3)H]adenine to isolated BLM was observed in a dose-dependent manner with K(d) and B(max) of 242.

View Article and Find Full Text PDF