Publications by authors named "Adan Colon-Carmona"

A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbon (PAH) contamination has a negative impact on ecosystems. PAHs are a large group of toxins with two or more benzene rings that are persistent in the environment. Some PAHs can be cytotoxic, teratogenic, and/or carcinogenic.

View Article and Find Full Text PDF

The historic underrepresentation of women, certain racial and ethnic minorities, and members of other marginalized groups in careers in science, technology, engineering, and mathematics (STEM) reflects a disproportionate exit of individuals from these academic and career paths due to both environmental and personal factors. To transition successfully from classroom-based learning to the research environment, students must acquire various forms of capital nested within a largely hidden curriculum that most scientists learn informally. We have developed a semester-long course for undergraduate researchers that makes explicit concepts and strategies that contribute to STEM persistence.

View Article and Find Full Text PDF

Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs.

View Article and Find Full Text PDF

The study is the first to reveal the proteomic response in plants to a single PAH stress, and indicates that NDPK3 is a positive regulator in the Arabidopsis response to phenanthrene stress. Polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic pollutants that are byproducts of carbon-based fuel combustion, and tend to persist in the environment for long periods of time. PAHs elicit complex, damaging responses in plants, and prior research at the physiological, biochemical, and transcriptional levels has indicated that reactive oxygen species (ROS) and oxidative stress play major roles in the PAH response.

View Article and Find Full Text PDF

Soil communities associated with specific plant species affect individual plants' growth and competitive ability. Limited evidence suggests that unique soil communities can also differentially influence growth and competition at the ecotype level. Previous work with Arabidopsis thaliana has shown that accessions produce distinct and reproducible rhizosphere bacterial communities, with significant differences in both species composition and relative abundance.

View Article and Find Full Text PDF

The use of in vivo biosensors to acquire environmental pollution data is an emerging and promising paradigm. One major challenge is the identification of highly specific biomarkers that selectively report exposure to a target pollutant, while remaining quiescent under a diverse set of other, often unknown, environmental conditions. This study hypothesized that a microarray data mining approach can identify highly specific biomarkers, and, that the robustness property can generalize to unforeseen environmental conditions.

View Article and Find Full Text PDF

Background: Polycyclic aromatic hydrocarbons (PAHs) are toxic, widely-distributed, environmentally persistent, and carcinogenic byproducts of carbon-based fuel combustion. Previously, plant studies have shown that PAHs induce oxidative stress, reduce growth, and cause leaf deformation as well as tissue necrosis. To understand the transcriptional changes that occur during these processes, we performed microarray experiments on Arabidopsis thaliana L.

View Article and Find Full Text PDF

The rhizosphere is strongly influenced by plant-derived phytochemicals exuded by roots and plant species exert a major selective force for bacteria colonizing the root-soil interface. We have previously shown that rhizobacterial recruitment is tightly regulated by plant genetics, by showing that natural variants of Arabidopsis thaliana support genotype-specific rhizobacterial communities while also releasing a unique blend of exudates at six weeks post-germination. To further understand how exudate release is controlled by plants, changes in rhizobacterial assemblages of two Arabidopsis accessions, Cvi and Ler where monitored throughout the plants' life cycle.

View Article and Find Full Text PDF

Plant species is considered to be one of the most important factors in shaping rhizobacterial communities, but specific plant-microbe interactions in the rhizosphere are still not fully understood. Arabidopsis thaliana, for which a large number of naturally occurring ecotype accessions exist, lacks mycorrhizal associations and is hence an ideal model for rhizobacterial studies. Eight Arabidopsis accessions were found to exert a marked selective influence on bacteria associated with their roots, as determined by terminal-restriction fragment length polymorphism (T-RFLP) and ribosomal intergenic spacer analysis (RISA).

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are of global environmental concern because they cause many health problems including cancer and inflammation of tissue in humans. Plants are important in removing PAHs from the atmosphere; yet, information on the physiology, cell and molecular biology, and biochemistry of PAH stress responses in plants is lacking. The PAH stress response was studied in Arabidopsis (Arabidopsis thaliana) exposed to the three-ring aromatic compound, phenanthrene.

View Article and Find Full Text PDF

During postembryonic plant development, cell division is coupled to cell growth. There is a stringent requirement to couple these processes in shoot and root meristems. As cells pass through meristems, they transit through zones with high rates of cell growth and proliferation during organogenesis.

View Article and Find Full Text PDF